首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of flexible and transparent polyarylene ether nitrile with pendant carboxyl groups/Eu(III) fluorescent films were successfully prepared, and characterized by scanning electron microscopy, energy-dispersive spectroscopy, thermogravimetric analysis, tensile test, ultraviolet–visible absorption and fluorescence spectroscopy. The results showed that the films possess high thermal stability (5% weight loss temperatures over 425 °C) and high mechanical strength (tensile strengths exceeding 90 MPa). Furthermore, all the films exhibit a relatively high transmittance in the visible region, and also show an excellent macroscopic flexibility, so that they can be easily bent and curled. This is mainly attributed to the superior performance of the polymer matrix. The photoluminescence results indicated that the films emit an intense red light at 617 nm under ultraviolet excitation, which is attributed to the 5D0  7F2 transitions of Eu(III) ions.  相似文献   

2.
Europium-doped yttrium aluminum garnet (Y3Al5O12:Eu, YAG:Eu) nanocrystallites were prepared by calcining the precursors obtained via a co-precipitation method using a mixed solution of NH4HCO3 and NH3·H2O as the precipitator. The results of XRD, FTIR and thermal analysis showed that phase-pure YAG:Eu without any other phases was obtained at 900 °C. TEM results indicated that the particle sizes are 50–100 nm. YAG:Eu nanocrystallites showed four emission bands ascribed to 5D0  7F1 transition (592 and 597 nm) and 5D0  7F2 transition (611 and 633 nm) of Eu3+, respectively. The intensity of the magnetic dipole transition (5D0  7F1) is stronger than that of the electric dipole transition (5D0  7F2). The influence of the precipitators with different molar ratios of NH4HCO3 to NH3·H2O on the thermal properties of the as-prepared precursors and luminescent properties of the resulting YAG:Eu nanocrystallites was also investigated.  相似文献   

3.
《Optical Materials》2014,36(12):2357-2365
Lanthanide compounds of general formula [Ln2(2,5-tdc)3(dmf)2(H2O)2]·2dmf·H2O (Ln = Eu(III) (1), Tb(III) (2), Gd(III) (3) and Dy(III) (4), dmf = N,N′-dimethylformamide and 2,5-tdc2− = 2,5-thiophedicarboxylate anion) were synthesized and characterized by elemental analysis, X-ray powder diffraction patterns, thermogravimetric analysis and infrared spectroscopy. Phosphorescence data of Gd(III) complex showed that the triplet states (T1) of 2,5-tdc2− ligand have higher energy than the main emitting states of Eu(III), Tb(III) and Dy(III), indicating that 2,5-tdc2− ligand can act as intramolecular energy donor for these metal ions. An energy level diagram was used to establish the most relevant channels involved in the ligand-to-metal energy transfer. The high value of experimental intensity parameter Ω2 for the Eu(III) complex indicate that the europium ion is in a highly polarizable chemical environment. The emission quantum efficiency (η) of the 5D0 emitting level of Eu(III) was also determined. The complexes act as possible light conversion molecular devices (LCMDs).  相似文献   

4.
《Materials Research Bulletin》2006,41(8):1578-1583
In this paper, a series of novel luminescent materials, SrZnO2:Eu3+,M+ (M = Li, Na, K) have been synthesized by conventional solid-state reaction. X-ray diffraction (XRD) patterns and photoluminescence (PL) spectra were carried out to characterize their structural and luminescent properties. It was found that under ultraviolet excitation with a wavelength of 301 nm, SrZnO2:Eu3+ gives a red luminescence that was attributed to the transitions from 5D0 excited states to 7FJ (J = 0–4) ground states of Eu3+ ions. The feature and the high intensity of hypersensitive transition 5D0  7F2 indicate that Eu3+ prefers to occupy a low symmetry site. The incorporation of alkali metal ions greatly enhanced the luminescence intensity and slightly changed the excitation and emission peak position, probably due to the influence of the coordination conditions for Eu3+ ions.  相似文献   

5.
The complexes of europium(III) with 4,6-diacetylresorcinol (H2DAR) and a co-ligand (phen, bpy or 2,2′-bipyridine N,N′-dioxide (2,2′-bpyO2)) were in situ synthesized in silica matrix via a two-step gel process. The formation of complexes in silica gel was confirmed by the luminescence excitation spectra. The silica gels that contain in situ synthesized europium complexes exhibit the characteristic emission bands of the Eu(III). The results show that there are two ways to enhance the emission intensity of the Eu(III): (i) synthesize the complex in silica matrix and (ii) synthesize the complex with a co-ligand, which coordinates with Eu(III) in the composite system and can efficiently transfer the energy from 4,6-diacetylresorcinol to the Eu(III). The order of the luminescence intensities of the complexes is: Eu2(DAR)3(phen)2-(sol–gel) > Eu2(DAR)3(2,2′-bpyO2)2-(sol–gel) > Eu2(DAR)3 (bpy)2-(sol–gel) > Eu2(DAR)3-(sol–gel) > pure Eu2(DAR)3·4H2O.  相似文献   

6.
Eu3+, Er3+ and Yb3+ co-doped BaGd2(MoO4)4 two-color emission phosphor was synthesized by the high temperature solid-state method. The structure of the sample was characterized by XRD, and its luminescence properties were investigated in detail. Under the excitation of 395 nm ultraviolet light, the BaGd2(MoO4)4:Eu3+,Er3+,Yb3+ phosphor emitted an intense red light at 595 and 614 nm, which can be attributed to 5D0  7F1 and 5D0  7F2 transitions of Eu3+, respectively. The phosphor will also show bright green light under 980 nm infrared light excitation. The green emission peaks centred at 529 and 552 nm, were attributed to 4H11/2  4I15/2 and 4S3/2  4I15/2 transitions of Er3+, respectively. It indicated that the two-color emission can be achieved from the same BaGd2(MoO4)4:Eu3+,Er3+,Yb3+ host system based on the different pumping source, 395 nm UV light and 980 nm infrared light, respectively. The obtained results showed that this kind of phosphor may be potential in the field of multi-color fluorescence imaging and anti-counterfeiting.  相似文献   

7.
The photoluminescence (PL) and vacuum ultraviolet (VUV) excitation properties are studied for the BaZr(BO3)2:Eu3+ phosphor with incorporating the Al3+, La3+, or Y3+ ion into the lattice. The excitation spectrum shows an absorption band in the VUV region with the band-edge at 200 nm and a very weak charge transfer band of Eu3+ at about 226 nm. The luminescence spectrum shows a strong emission at 615 nm (5D0  7F2 transition) and weak emission at 594 nm (5D0  7F1 transition) in BaZr(BO3)2:Eu3+, with a good red color purity. The PL intensity is increased by incorporating Al3+ into the BaZr(BO3)2 lattice. The PL intensity has also increased by incorporating La3+ into the lattice, however, the red color purity has deteriorated because of the increased centrosymmetric nature of the site. With the incorporation of Y3+ into the BaZr(BO3)2 lattice, the PL characteristics of the Eu3+ activator resembles that in the YBO3 lattices. The intensity of the red PL for the Eu3+ activator is the highest with good color purity for BaZr(BO3)2:Eu3+ incorporated with both Al3+ (10%) and La3+ (0.5%).  相似文献   

8.
Lanthanide complexes with N-(diphenylphosphoryl)-4-methylbenzenesulfonamide (HPMSP) as new sensitizers of visible luminescence were obtained. The series of stable lanthanide complexes Na[Ln(PMSP)4], where Ln = Eu3+, Gd3+, Tb3+ were characterized by X-ray diffraction, IR, absorption, emission, and excitation spectra at 295 and 77 K as well as luminescence decay times and intrinsic emission quantum yields. The Tb complex, exhibiting relatively efficient ligand-to-metal energy transfer and strong metal-centred emission, is a promising candidate for effective UV-to-visible energy converters. Temperature dependent quenching of sensitized 5D0 europium emission and presence of 5D1 emission are discussed.  相似文献   

9.
Eu3+ ions incorporated Li–K–Zn fluorotellurite glasses, (70  x)TeO2 + 10Li2O + 10K2O + 10ZnF2 + xEu2O3, (0  x  2 mol%) were prepared via melt quenching technique. Optical absorption from 7F0 and 7F1 levels of the Eu3+-doped glass has been studied to examine the covalent bonding characteristics, energy band gap and Judd–Ofelt intensity parameters. The emission spectra (5D0  7F0,1,2,3,4) of the glasses were used to estimate the luminescence enhancement, asymmetric environment in the vicinity of Eu3+ ions, stimulated emission cross section and branching ratios. The phonon side band mechanism of 5D2 level of the Eu3+ ions in the prepared glass was examined by considering the excitation and Raman spectra. The radiative lifetime calculated using Judd–Ofelt parameters was compared with the experimental lifetime to estimate the quantum efficiency of 5D0 level of Eu3+ ions in Li–K–Zn fluorotellurite glass.  相似文献   

10.
Europium activated yttrium aluminate (YAG:Eu) phosphors were synthesized using urea by wet chemical synthesis route. The luminescent behavior and the microstructural changes are monitored, depending on the amount of europium. The luminescent spectra of YAG:Eu phosphors possess four major emission bands in the range of 570–700 nm with maxima situated at 592 nm 598 nm, 611 nm and 631 nm. The intensity ratio between the 611 nm band as red component (5D0  7F2) and 592 nm band as orange component (5D0  7F1) is discussed, in order to obtain information about the chemical surroundings of the luminescent centers and their symmetry. X-ray diffraction showed that the main crystalline phase of the phosphors is yttrium aluminum garnet Y3Al5O12 with cubic structure. Monoclinic Y4Al2O9 phase was also found as impurity. The effect of the europium content on the microstructural parameters is revealed. The luminescent characteristics depend strongly on the structural purity, activator concentration and incorporation of europium ions in the host lattice. Additional investigations as FT-IR, BET, ICP-OES were performed for a better understanding of the luminescent and structural characteristics of YAG:Eu phosphor.  相似文献   

11.
《Optical Materials》2014,36(12):2320-2328
Trivalent dysprosium-doped strontium silicate (Sr2SiO4) phosphors were prepared by sol–gel synthesis using tetra ethyl orthosilicate (TEOS) as precursor. The synthesis temperature could be brought down to 600 °C for formation of a single phase sample. The material was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), photoluminescence (PL), and thermally stimulated luminescence (TSL). The luminescence study revealed strong 4F9/2  6H13/2 transition at 577 nm (yellow), strong 4F9/2  6H15/2 transition at 482 nm (blue) and weak 4F9/2  6H11/2 transition at 677 nm (red), when excited by 250 nm (Charge transfer band, CTB) or 352 nm (f–f band). The concentration of the dopant ion and the temperature of annealing were optimized for maximum PL intensity. The critical energy-transfer distance for the Dy3+ ions was evaluated based on which, the quenching mechanism was verified to be a multipole–multipole interaction. The thermally stimulated luminescence studies of Sr2SiO4:Dy3+ sample showed main TSL glow peak at 413 K. The trap parameters namely activation energy (E), order of kinetics (b), and frequency factor (s) for this peak were determined using glow curve shape method.  相似文献   

12.
In the present study, we report the formation of transparent glass-ceramics containing BaGdF5 nanocrystals under optimum ceramization of SiO2–BaF2–K2O–Sb2O3–GdF3–Eu2O3 based oxyfluoride glass and the energy transfer mechanisms in Eu2+  Eu3+ and Gd3+  Eu3+ has been interpreted through luminescence study. The modification of local environment surrounding dopant ion in glass and glass ceramics has been studied using Eu3+ ion as spectral probe. The optimum ceramization temperature was determined from the differential scanning calorimetry (DSC) thermogram which revealed that the glass transition temperature (Tg), the crystallization onset temperature (Tx), and crystallization peak temperature (Tp) are 563 °C, 607 °C and 641 °C, respectively. X-ray diffraction pattern of the glass-ceramics sample displayed the presence of cubic BaGdF5 phase (JCPDS code: 24-0098). Transmission electron microscopy image of the glass-ceramics samples revealed homogeneous distribution of spherical fluoride nanocrystals ranging 5–15 nm in size. The emission transitions from the higher excited sates (5DJ, J = 1, 2, and 3) as well as lowered asymmetry ratio of the 5D0  7F2 transition (forced electric dipole transition) to that of the 5D0  7F1 transition (magnetic dipole) of Eu3+ in the glass-ceramics when compared to glass sample demonstrated the incorporation of dopant Eu3+ ions into the cubic BaGdF5 nanocrystals with higher local symmetry with enhanced ionic nature. The presence of absorption bands of Eu2+ ions and Gd3+ ions present in the glass matrix or fluoride nanocrystals in the excitation spectra of Eu3+ by monitoring emission at 614 nm indicated energy transfer from (Eu2+  Eu3+) and (Gd3+  Eu3+) in both glass and glass-ceramics samples.  相似文献   

13.
Studies of line intensity in the optical and magneto-optical spectra in the holmium-containing paramagnetic garnet Ho3+:YAG were carried out within the visible spectrum at T = 85 K. Detailed investigation of the magnetic circularly polarized luminescence spectra at 85 and 300 K on 5S2  5I8 emission transition in Ho3+:YAG was carried out. A quasi-doublet state in the energy spectrum of the Ho3+ ions was observed, characterized by a significant magneto-optical activity, which is caused by a large Zeeman splitting of the quasi-doublet. The measurement of the magnetic circular polarized luminescence spectrum carried out within one of the emission lines of the luminescence band 5S2  5I8 in Ho3+:YAG at 85 K shows significant magneto-optical effects of the intensity change of the emitted light, compared to that measured for the other emission lines in the same luminescent band.  相似文献   

14.
The luminescence properties of Sm2+ in Sr2B5O9R (R=Cl, Br) have been studied and compared with those in SrB4O7. In the range from 80 to 300 K the emission of Sm2+ in Sr2B5O9R is predominantly due to the 4f55d  4f6 transition, while SrB4O7 : Sm2+ shows a very efficient emission of the 4f6  4f6 type. Differences in the luminescence of Sm2+ in the strontium haloborates and tetraborate are discussed.  相似文献   

15.
For the first time, novel Ba3−xWO6:xEu3+ (x = 0.01, 0.03, 0.05, 0.08, 0.1) nanowire phosphors were synthesized by the conventional solid state method. The X-ray pattern indicates that Ba3WO6 belongs to the cubic system with space group Fm-3m. The photoluminescence (PL) spectra demonstrate that the phosphors emit strong red light centered at 595 nm corresponding to 5D0  7F1 transition of Eu3+ ion under CT band excitation. The position of charge transfer (CT) band of Ba2.95WO6:0.05Eu3+ shifts to a lower energy region (red shift) with the increase of annealing temperature. The co-doped effect of alkali-metal ions (Li+, Na+, and K+) on the luminescence behavior of Ba3WO6:Eu3+ has been discussed in this paper. The luminescence properties suggest that the Ba3WO6:Eu3+ phosphor may be a promising candidate in solid-state lighting applications.  相似文献   

16.
《Optical Materials》2010,32(12):1822-1824
A series of lanthanide dinitrosalicylates M3Ln(3,5-NO2-Sal)3 · nH2O (Ln = Eu, Gd; M = Li, Na, K, Cs) was synthesized. It was found that the luminescence efficiency of some M3Eu(3,5-NO2-Sal)3 · nH2O compounds was near to the high efficiency of europium dibenzoylmethanate with 1,10-phenanthroline, Eu(DBM)3 · Phen. The luminescence excitation spectra, electron-vibrational luminescence spectra, and vibrational IR spectra were investigated. The energy of the lowest excited triplet state of the ligand was obtained from phosphorescence spectra of M3Gd(3,5-NO2-Sal)3 · nH2O, M(3,5-NO2-HSal) · nH2O, and M2(3,5-NO2-Sal) · nH2O. The details of the structure of compounds were discussed. The influence of different M-cations on the Eu3+ luminescence efficiency and on the processes of excitation energy transfer to a Eu3+ ion was analyzed. The presence of large alkali metal cations in lanthanide dinitrosalicylates and an increase in the temperature weaken the network of hydrogen bonds and, to some extent, the “ligand–metal” bonds. This is a cause of a long-wavelength shift of the intraligand charge transfer (ILCT) band in Eu3+ excitation spectra arising at inclusion of Cs+ instead of Li+ cations in the crystal lattice and at the heating of compounds. A change of the energies of ligand electronic states at substitution of Li+ and Na+ for Cs+ can give a tenfold enhancement of the Eu3+ luminescence efficiency at 300 K.  相似文献   

17.
《Materials Research Bulletin》2006,41(10):1791-1797
In this work the La1.8Eu0.2O3 coating on nanometric alpha-alumina, α-Al2O3@La1.8Eu0.2O3, was prepared for the first time by a soft chemical method. The powder was heat-treated at 100, 400, 800 and 1200 °C for 2 h. X-ray powder diffraction patterns (XRD), transmission electronic microscopy (TEM), emission and excitation spectra, as well as Eu3+ lifetime were used to characterize the material and to follow the changes in structure as the heating temperature increases. The Eu3+ luminescence data revealed the characteristic transitions 5D0  7FJ (J = 0, 1 and 3) of Eu3+ at around 580, 591 and 613 nm, respectively, when the powders were excited by 393 nm. The red color of the samples changed to yellow when the powder was annealed at 1200 °C. The decrease in the (5D0  7F2)/(5D0  7F1) ratio from around 5.0 for samples heated at lower temperatures to 3.1 for samples annealed at 1200 °C is consistent with a higher symmetry of the Eu3+ at higher temperature. The excitation spectra of the samples also confirms this change by the presence of a more intense and broad band at around 317 nm, instead of the presence of the characteristic peak at 393 nm, which corresponds to the 7F0  5L6 transition of the Eu3+. The lifetimes of the 5D0  7F2 transition of Eu3+ for the samples heat-treated at 100, 400, 800 and 1200 °C was evaluated as 0.57, 0.72, 0.43 and 0.31 ms, respectively.  相似文献   

18.
《Optical Materials》2010,32(12):1828-1830
The results of the photoluminescence (PL) investigation of pure and chromium-doped MAlP2O7 (M = Na, K, Cs) compounds are presented. The spectra of the intrinsic luminescence of MAlP2O7 crystals consist of a separated UV band at a peak position near 330 nm and a complex wide band which covers the region of visible light up to 750 nm at excitation by VUV synchrotron radiation. The “red” band in 600–1000 nm diapason appears in the PL spectra of crystals doped with chromium ions. The effect of the temperature on the structure, the peak positions and intensities of the luminescence bands was studied. An assumption about the nature of the intrinsic PL was made. The “red” luminescence was considered as a result of the 4Т2  4А2 radiation transitions in the impurity Cr3+ ions located in the intermediate crystal field.  相似文献   

19.
《Materials Research Bulletin》2013,48(4):1397-1402
0-3 type ZnO/Bi3.6Eu0.4Ti3O12 (BEuT) nanocomposite films with ZnO nanopowders in BEuT host were prepared by chemical solution deposition. The effects of ZnO content on the structure, photoluminescence, and electrical properties of the films were investigated. The ZnO/BEuT molar ratio strongly affected the grain size and growth orientation of BEuT, dielectric and ferroelectric properties, as well as emission intensity. The nanocomposite films showed strong red emission peaks due to 5D0  7F1 and 5D0  7F2 transitions of Eu3+ ions. Good electrical properties with high dielectric constant of 480 (at 1 kHz) and large remanent polarization (2Pr) of 32 μC/cm2 were obtained for the nanocomposite films having a ZnO/BEuT molar ratio of 1:2. The mechanisms for enhanced photoluminescence and electric properties were discussed. The results suggest that the nanocomposite thin films are promising candidate materials for multifunctional optoelectronic devices.  相似文献   

20.
Yellow upconversion (UC) luminescence is observed in Ho3+/Yb3+ co-doped CaMoO4 synthesized by complex citrate-gel method. Under 980 nm excitation, Ho3+/Yb3+ co-doped CaMoO4 exhibited yellow emission based on green emission near 543 nm generated by 4F4, 5S2  5I8 transition and strong red emission around 656 nm generated by 5F5  5I8 transition, which are assigned to the intra 4f transitions of Ho3+ ions. The optimum doping concentration of Ho3+ and Yb3+ was investigated for highest upconversion luminescence. Based on pump power dependence, upconversion mechanism of Ho3+/Yb3+ co-doped CaMoO4 was studied in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号