首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Minimum spanning tree (MST) problem is of high importance in network optimization and can be solved efficiently. The multi-criteria MST (mc-MST) is a more realistic representation of the practical problems in the real world, but it is difficult for traditional optimization technique to deal with. In this paper, a non-generational genetic algorithm (GA) for mc-MST is proposed. To keep the population diversity, this paper designs an efficient crossover operator by using dislocation a crossover technique and builds a niche evolution procedure, where a better offspring does not replace the whole or most individuals but replaces the worse ones of the current population. To evaluate the non-generational GA, the solution sets generated by it are compared with solution sets from an improved algorithm for enumerating all Pareto optimal spanning trees. The improved enumeration algorithm is proved to find all Pareto optimal solutions and experimental results show that the non-generational GA is efficient.  相似文献   

3.
The capacitated minimum spanning tree problem is to find a minimum spanning tree with an additional cardinality constraint on the number of nodes in any subtree off a given root node. In this paper we propose two improvements on a previous cutting-plane method proposed by Gouveia and Martins (Networks 35(1) (2000) 1) namely, a new set of inequalities that can be seen as hop-indexed generalization of the well known generalized subtour elimination (GSE) constraints and an improved separation heuristic for the original set of GSE constraints. Computational results show that the inclusion of the new separation routine and the inclusion of the new inequalities in Gouveia and Martins’ iterative method (see (Networks 35(1) (2000) 1)) produce improvements on previously reported lower bounds. Furthermore, with the improved method, several of previous unsolved instances have been solved to optimality.  相似文献   

4.
研究内部节点受限的最小生成树问题:给定一个赋权无向完全图[G=V,E],假定[w:E→R+]为边集[E]的权重函数且满足三角不等式,给定点集[V]的一个子集[RR?V],目标是寻找图[G]的一个满足[R]中的点皆为内部顶点的权重最小的生成树。由于该问题是[NP-]困难的,提出了一个伪多项式时间最优算法,设计了一个近似比为2的多项式时间近似算法,并且给出例子以说明该近似比是紧的。  相似文献   

5.
Given an undirected, connected, weighted graph and a positive integer k, the bounded-diameter minimum spanning tree (BDMST) problem seeks a spanning tree of the graph with smallest weight, among all spanning trees of the graph, which contain no path with more than k edges. In general, this problem is NP-Hard for 4 ≤ k < n − 1, where n is the number of vertices in the graph. This work is an improvement over two existing greedy heuristics, called randomized greedy heuristic (RGH) and centre-based tree construction heuristic (CBTC), and a permutation-coded evolutionary algorithm for the BDMST problem. We have proposed two improvements in RGH/CBTC. The first improvement iteratively tries to modify the bounded-diameter spanning tree obtained by RGH/CBTC so as to reduce its cost, whereas the second improves the speed. We have modified the crossover and mutation operators and the decoder used in permutation-coded evolutionary algorithm so as to improve its performance. Computational results show the effectiveness of our approaches. Our approaches obtained better quality solutions in a much shorter time on all test problem instances considered.  相似文献   

6.
针对度约束最小生成树问题,提出了一种新的快速算法。新的快速算法分为两个主要部分,第一部分从一棵最小生成树出发,构造一棵度约束树。第二部分设计了一种改进策略,从第一部分求得的度约束树出发,每次去掉树的一条边,将顶点按照连通性划分成两个集合,在不违反度约束的情况下,从这两个集合构成的边割中,选择一条权值减少最大的边添加到图中。通过大量的数值实验表明新的快速算法性能良好。  相似文献   

7.
Uncertainty theory has shown great advantages in solving many nondeterministic problems, one of which is the degree-constrained minimum spanning tree (DCMST) problem in uncertain networks. Based on different criteria for ranking uncertain variables, three types of DCMST models are proposed here: uncertain expected value DCMST model, uncertain α-DCMST model and uncertain most chance DCMST model. In this paper, we give their uncertainty distributions and fully characterize uncertain expected value DCMST and uncertain α-DCMST in uncertain networks. We also discover an equivalence relation between the uncertain α-DCMST of an uncertain network and the DCMST of the corresponding deterministic network. Finally, a related genetic algorithm is proposed here to solve the three models, and some numerical examples are provided to illustrate its effectiveness.  相似文献   

8.
Ant Colony Optimization (ACO) is a kind of metaheuristic that has become very popular for solving problems from combinatorial optimization. Solutions for a given problem are constructed by a random walk on a so-called construction graph. This random walk can be influenced by heuristic information about the problem. In contrast to many successful applications, the theoretical foundation of this kind of metaheuristic is rather weak. Theoretical investigations with respect to the runtime behavior of ACO algorithms have been started only recently for the optimization of pseudo-Boolean functions.We present the first comprehensive rigorous analysis of a simple ACO algorithm for a combinatorial optimization problem. In our investigations, we consider the minimum spanning tree (MST) problem and examine the effect of two construction graphs with respect to the runtime behavior. The choice of the construction graph in an ACO algorithm seems to be crucial for the success of such an algorithm. First, we take the input graph itself as the construction graph and analyze the use of a construction procedure that is similar to Broder’s algorithm for choosing a spanning tree uniformly at random. After that, a more incremental construction procedure is analyzed. It turns out that this procedure is superior to the Broder-based algorithm and produces additionally in a constant number of iterations an MST, if the influence of the heuristic information is large enough.  相似文献   

9.
We describe a branch and bound algorithm to solve the degree-constrained minimum spanning tree problem. We propose an edge exchange analysis frequently used in the algorithm and three types of heuristic methods. Computational results are reported for problems with up to 200 vertices. These results are much better than known results from the literature.  相似文献   

10.
A quadratic minimum spanning tree problem determines a minimum spanning tree of a network whose edges are associated with linear and quadratic weights. Linear weights represent the edge costs whereas the quadratic weights are the interaction costs between a pair of edges of the graph. In this study, a bi‐objective rough‐fuzzy quadratic minimum spanning tree problem has been proposed for a connected graph, where the linear and the quadratic weights are represented as rough‐fuzzy variables. The proposed model is formulated by using rough‐fuzzy chance‐constrained programming technique. Subsequently, three related theorems are also proposed for the crisp transformation of the proposed model. The crisp equivalent models are solved with a classical multi‐objective solution technique, the epsilon‐constraint method and two multi‐objective evolutionary algorithms: (a) nondominated sorting genetic algorithm II (NSGA‐II) and (b) multi‐objective cross‐generational elitist selection, heterogeneous recombination, and cataclysmic mutation (MOCHC) algorithm. A numerical example is provided to illustrate the proposed model when solved with different methodologies. A sensitivity analysis of the example is also performed at different confidence levels. The performance of NSGA‐II and MOCHC are analysed on five randomly generated instances of the proposed model. Finally, a numerical illustration of an application of the proposed model is also presented in this study.  相似文献   

11.
In this paper the problem of a degree-constrained minimum spanning tree (DCMST) is defined. The problem is formulated as a linear 0–1 integer programming problem. A primal and a dual heuristic (construction) procedure and a branch-and-bound algorithm are proposed to construct a DCMST. These procedures are illustrated with a simple example. Some computational experience with these algorithms is also reported.  相似文献   

12.
In this paper we discuss models and methods for solving the rooted distance constrained minimum spanning tree problem which is defined as follows: given a graph G=(V,E)G=(V,E) with node set V={0,1,…,n}V={0,1,,n} and edge set EE, two integer weights, a cost cece and a delay wewe associated with each edge ee of EE, and a natural (time limit) number HH, we wish to find a spanning tree TT of the graph with minimum total cost and such that the unique path from a specified root node, node 0, to any other node has total delay not greater than HH. This problem generalizes the well known hop-constrained spanning tree problem and arises in the design of centralized networks with quality of service constraints and also in package shipment with service guarantee constraints. We present three theoretically equivalent modeling approaches, a column generation scheme, a Lagrangian relaxation combined with subgradient optimization procedure, both based on a path formulation of the problem, and a shortest path (compact) reformulation of the problem which views the underlying subproblem as defined in a layered extended graph. We present results for complete graph instances with up to 40 nodes. Our results indicate that the layered graph path reformulation model is still quite good when the arc weights are reasonably small. Lagrangian relaxation combined with subgradient optimization procedure appears to work much better than column generation and seems to be a quite reasonable approach to the problem for large weight, and even small weight, instances.  相似文献   

13.
The capacitated minimum spanning tree (CMST) is a notoriously difficult problem in combinatorial optimization. Extensive investigation has been devoted to developing efficient algorithms to find optimal or near-optimal solutions. This paper proposes a new CMST heuristic algorithm that effectively combines the classical node-based and tree-based neighborhoods embodied in a filter-and-fan (F&F) approach, a local search procedure that generates compound moves in a tree search fashion. The overall algorithm is guided by a multi-level oscillation strategy used to trigger each type of neighborhood while allowing the search to cross feasibility boundaries. Computational results carried out on a standard set of 135 benchmark problems show that a simple F&F design competes effectively with prior CMST metaheuristics, rivaling the best methods, which are significantly more complex.  相似文献   

14.
针对网络设计和组合优化中的度约束最小生成树问题,基于第k最小生成树的求解算法,提出了一种求解网络G关于指定节点的最小k度生成树的新算法。该算法通过对网络G的最小生成树作最优可行变换,逐步构造出指定节点的度数越来越接近度约束k的最小i度生成树,最终得到了网络G关于指定节点的最小k度生成树。给出了算法实施的具体步骤,并证明了算法的正确性。最后通过仿真结果和一个运输实例,表明了该算法在解决度约束最小生成树问题中的有效性。  相似文献   

15.
Given a graph G and a bound d?≥?2, the bounded-diameter minimum spanning tree problem seeks a spanning tree on G of minimum weight subject to the constraint that its diameter does not exceed d. This problem is NP-hard; several heuristics have been proposed to find near-optimal solutions to it in reasonable times. A decentralized learning automata-based algorithm creates spanning trees that honor the diameter constraint. The algorithm rewards a tree if it has the smallest weight found so far and penalizes it otherwise. As the algorithm proceeds, the choice probability of the tree converges to one; and the algorithm halts when this probability exceeds a predefined value. Experiments confirm the superiority of the algorithm over other heuristics in terms of both speed and solution quality.  相似文献   

16.
The quadratic minimum spanning tree problem (Q-MST) is an extension of the minimum spanning tree problem (MST). In Q-MST, in addition to edge costs, costs are also associated with ordered pairs of distinct edges and one has to find a spanning tree that minimizes the sumtotal of the costs of individual edges present in the spanning tree and the costs of the ordered pairs containing only edges present in the spanning tree. Though MST can be solved in polynomial time, Q-MST is NP-Hard. In this paper we present an artificial bee colony (ABC) algorithm to solve Q-MST. The ABC algorithm is a new swarm intelligence approach inspired by intelligent foraging behavior of honey bees. Computational results show the effectiveness of our approach.  相似文献   

17.
18.
A common way of computing all efficient (Pareto optimal) solutions for a biobjective combinatorial optimisation problem is to compute first the extreme efficient solutions and then the remaining, non-extreme solutions. The second phase, the computation of non-extreme solutions, can be based on a “k-best” algorithm for the single-objective version of the problem or on the branch-and-bound method. A k-best algorithm computes the k-best solutions in order of their objective values. We compare the performance of these two approaches applied to the biobjective minimum spanning tree problem. Our extensive computational experiments indicate the overwhelming superiority of the k-best approach. We propose heuristic enhancements to this approach which further improve its performance.  相似文献   

19.
Given a connected, undirected graph G whose edges are labeled (or colored), the minimum labeling spanning tree (MLST) problem seeks a spanning tree on G with the minimum number of distinct labels (or colors). In recent work, the MLST problem has been shown to be NP-hard and an effective heuristic [maximum vertex covering algorithm (MVCA)] has been proposed and analyzed. We use a one-parameter genetic algorithm (GA) to solve the problem. In computational tests, the GA clearly outperforms MVCA.  相似文献   

20.
Degree-constrained minimum spanning tree problem is an NP-hard bicriteria combinatorial optimization problem seeking for the minimum weight spanning tree subject to an additional degree constraint on graph vertices. Due to the NP-hardness of the problem, heuristics are more promising approaches to find a near optimal solution in a reasonable time. This paper proposes a decentralized learning automata-based heuristic called LACT for approximating the DCMST problem. LACT is an iterative algorithm, and at each iteration a degree-constrained spanning tree is randomly constructed. Each vertex selects one of its incident edges and rewards it if its weight is not greater than the minimum weight seen so far and penalizes it otherwise. Therefore, the vertices learn how to locally connect them to the degree-constrained spanning tree through the minimum weight edge subject to the degree constraint. Based on the martingale theorem, the convergence of the proposed algorithm to the optimal solution is proved. Several simulation experiments are performed to examine the performance of the proposed algorithm on well-known Euclidean and non-Euclidean hard-to-solve problem instances. The obtained results are compared with those of best-known algorithms in terms of the solution quality and running time. From the results, it is observed that the proposed algorithm significantly outperforms the existing method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号