首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of fatigue experiments was performed in order to investigate the effect of the R-ratio on the fatigue/fracture behavior of adhesively-bonded pultruded GFRP double cantilever beam joints. Constant amplitude fatigue experiments were carried out under displacement control with a frequency of 5 Hz in ambient laboratory conditions. Three different R-ratios were applied: R = 0.1, R = 0.5 and R = 0.8. The crack length was determined by means of crack gages and a dynamic compliance method. The dominant failure mode was a fiber-tear failure that occurred in the mat layers of the pultruded laminates. The depth of the crack location significantly affected the energy dissipated for the fracture under cyclic loading. Short-fiber and roving bridging increased the fracture resistance during crack propagation. Fatigue crack growth curves were derived for each R-ratio and each observed crack path location. The fatigue threshold and slope of the fatigue crack growth curve significantly increased with increased R-ratio.  相似文献   

2.
Rotating bending (52.5 Hz) and ultrasonic (20 kHz) fatigue tests were performed on the specimens of a bearing steel, which were quenched and tempered at 150 °C, 300 °C, 450 °C and 600 °C, respectively, to investigate the influence of strength level and loading frequency on the fatigue behavior in very-high-cycle regime. Influences on fatigue resistance of materials, characteristics of SN curves and transition of crack initiation site were discussed. The specimens with higher strength showed interior fracture mode in very-high-cycle regime and with slight frequency effect, otherwise cracks all initiate from the surface and the fatigue strength was much higher under ultrasonic cycling.  相似文献   

3.
Effects of anisotropy and temperature on cyclic deformation and fatigue behavior of two short glass fiber reinforced polymer composites were investigated. Fatigue tests were conducted under fully-reversed (R = −1) and positive stress ratios (R = 0.1 and 0.3) with specimens of different thicknesses, different fiber orientations, and at temperatures of −40 °C, 23 °C, and 125 °C. In samples with 90° fiber orientation angle, considerable effect of thickness on fatigue strength was observed. Effect of mold flow direction was significant at all temperatures and stress ratios and the Tsai–Hill criterion was used to predict off-axis fatigue strengths. Temperature also greatly influenced fatigue strength and a shift factor of Arrhenius type was developed to correlate fatigue data at various temperatures, independent of the mold flow direction and stress ratio. Micromechanisms of fatigue failure at different temperatures were also investigated. Good correlations between fatigue strength and tensile strength were obtained and a method for obtaining strain–life curves from load-controlled fatigue test data is presented. A fatigue life estimation model is also presented which correlates data for different temperatures, fiber orientations, and stress ratios.  相似文献   

4.
A detailed investigation of low cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) of a 316FR type stainless steel is presented in this paper in order to identify the failure mechanism based on the experimental results and the subsequent metallography of the samples. The LCF–TMF servohydraulic testing with a temperature uniformity of less than ±5 °C within the gauge section of the specimens was employed to conduct the experimental tests. Fully-reversed, strain-controlled isothermal tests were conducted at 650 °C for the strain ranges of Δɛ = ±0.4%, ±0.8%, ±1.0% and ±1.2%. Strain-controlled in-phase (IP) thermo-mechanical fatigue tests were conducted on the same material and the temperature was cycled between 500 °C and 650 °C. Additionally, the creep–fatigue interactions were investigated with the introduction of symmetrical hold time under both LCF–TMF tests. The cyclic behaviour was further studied by performing microstructural investigations using the scanning electron microscope (SEM).  相似文献   

5.
Effects of frequency on fatigue behavior of a chemical vapor infiltrated carbon fiber reinforced silicon carbide composite (C/SiC) were investigated at an elevated temperature of 550 °C. Tension–tension fatigue tests were conducted at three frequencies: 0.1, 10 and 375 Hz to establish stress versus cycles to failure (S–N) relationships. There was an increase in cycles to failure at a given stress level as frequency increased from 0.1 to 375 Hz at elevated temperature. This trend was different at room temperature where cycles to failure decreased when frequency changed from 40 to 375 Hz but remained almost same below 40 Hz. There was a reduction in cycles to failure at frequencies less than 40 Hz but cycles to failure remained same at a higher frequency of 375 Hz when test environment changed from room temperature to 550 °C. Analysis of damage mechanisms showed that the oxidation of carbon fibers was the major difference between the room and elevated temperatures, which caused a reduction in cycles to failure with lower frequencies at elevated temperature in comparison to that at room temperature. However, oxidation of carbon fibers was almost absent or negligible at higher frequency at elevated temperature, which caused practically no reduction in cycles to failure at elevated temperature in comparison to their counterparts at room temperature.  相似文献   

6.
Low temperature can be a significant problem affecting safety and maintenance of railway. In this study, the fatigue crack growth rate and rolling contact fatigue damage behaviors of high-speed rail material under different temperature conditions were investigated by a series of experiments. The results indicate that the stress and strength of rail material increase with the decrease of ambient temperature. The crack growth rate at 0 °C and − 20 °C is similar with that at 20 °C. While, when the temperature decreases to − 60 °C, the growth rate of crack increases sharply. The promotion of rail embrittlement at low temperature accompanied with the action of high stress causes the rapid failure and increase of surface crack length and subsurface crack damage. Meanwhile, three crack growth mechanism models at different temperatures can be inferred. The brittle fracture mode is increasingly apparent with the temperature decreasing.  相似文献   

7.
Due to the increased use of glass fibre reinforced polymer composite (GFRP) rebar in concrete structures, the durability performance of GFRP rebar has been an important research topic in recent years. This paper presents elastic modulus of alkaline environment (pH  13) aged pultruded GFRP rebar as evaluated by three different methods, namely, quasi-static tensile, quasi-static flexural and dynamic mechanical thermal tests. It was found that elastic modulus of the GFRP rebar samples did not change significantly due to exposure in alkaline environment at 60 °C for 1, 2, 3, 4, 6 and 14 months when compared with that of control sample. Elastic modulus was found to be in the range of 52.5–56.5 GPa irrespective to testing methods and ageing time. In addition, it was estimated from the long time projected results that quasi-static tensile, quasi-static flexural and dynamic mechanical moduli will be retained by about 93%, 95% and 85%, respectively, after 100 years in alkaline environment at 60 °C. Microscopic analysis indicated that quasi-static tensile and flexural failure was mainly due to matrix cracking and shear failure of fibre/matrix interface.  相似文献   

8.
In-phase (IP) and out-of-phase (OP) thermomechanical fatigue tests with T = 100–750 °C and optional dwells of 20 min at 750 °C were carried out on directionally solidified Ni-base Alloy 247 LC DS. Introducing dwells reduced the lifetime for both phase angles to about one sixth. Specific damage mechanisms were internal carbide and carbide–matrix interface cracks in IP tests and crack propagation along {1 1 1}-microtwin planes in OP tests. Introducing dwells intensified both effects, thus contributing to the lifetime reduction. During dwells, the gauge length may exhibit transversal creep because of extensometer forces distorting the strain measurement.  相似文献   

9.
《Composites Part A》2007,38(4):1192-1199
The aim of this study is to examine the corrosion fatigue behavior of filament wound composite pipes with a surface crack under alternating internal pressure. The filament wound pipes are composed of multi-layered E-glass/epoxy composites with a [±75°]3 lay-up. The surface notches were formed on the outer surface of the pipe along the pipe axis. Dilute (0.6 M) HCl acid was applied to the surface crack region by a corrosion cell mounted on the outer surface of the pipe. The results of an experimental investigation into the corrosion fatigue tests are conducted to observe the oil leakage failure and the crack propagation of the composite pipe subjected internal pressure loading with an open ended condition in which the pipe can be deformed freely in the axial direction. The internal pressure was generated by conventional hydraulic oil for fatigue loading. The fatigue tests are performed at 0.42 Hz frequency and a stress ratio of R = 0.05 in accordance with ASTM D-2992 standard. The oil leakage from the crack tip was observed after the crack propagation reached to the critical stress intensity level. The fatigue crack propagation behavior with the environment exposure was strongly dependent on the crack parameters such as crack-depth ratio and crack-aspect ratio. The micro structure of the fracture surface with the effect of environment and the fatigue loading were also observed.  相似文献   

10.
The effect of processing parameters on the mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding was analysed in this study. Different samples were produced by varying the advancing speeds of the tool as 80 and 115 mm/min and by varying the alloy positioned on the advancing side of the tool. In all the experiments the rotating speed is fixed at 1600 RPM. All the welds were produced perpendicularly to the rolling direction for both the alloys. Microhardness (HV) and tensile tests performed at room temperature were used to evaluate the mechanical properties of the joints. The mechanical tests were performed on the joints previously subjected to annealing at 250 °C for 1 h. For the fatigue tests, a resonant electromechanical testing machine was employed under constant loading control up to 250 Hz sine wave loading. The fatigue tests were conducted in the axial total stress–amplitude control mode, with R = σmin/σmax = 0.1. In order to analyse the microstructural evolution of the material, the welds’ cross-sections were observed optically and SEM observations were made of the fracture surfaces.  相似文献   

11.
Powder metallurgy processing of steels typically results in materials characterized by residual porosity, whose sizes and morphology, together with the microstructure, strongly affect the fatigue crack growth behaviour of the materials.Prismatic specimens were pressed at 7.0 g/cm3 density from Astaloy CrM powder and sintered under different conditions, varying the sintering temperature and the cooling rate after sintering.Optical observations allowed us to evaluate the sizes and the morphology of the porosity and the microstructural characteristics for all the investigated conditions. Fatigue tests were performed at R-ratio equal to 0.1 to investigate the threshold zone and to calculate the coefficients of the Paris law. All the tests were carried out according to the compliance method, and the crack length was evaluated during the tests. Moreover, KIC tests were performed in order to complete the investigation.On both fatigue and KIC samples, a fractographic analysis was carried out to investigate the crack path and the fracture surface features.The results show that the exponent of the Paris law is about 6.0 for 1120 °C sintered and about 4.7 for 1250 °C sintered materials. Interesting data have been also found for the threshold values.  相似文献   

12.
A user-friendly heat-resistant modified polymer-based adhesive was developed to join C/C composites. After calcination at 1300 °C, the bonding effect of the adhesive reached the highest as more heat-resistant ceramics and high-temperature melting glass were generated in the adhesive. Its bonding strength was kept above 15 MPa during test from RT to 500 °C and the corresponding joints ruptured at C/C substrates. Besides, after repeated thermal-cycling at 1300 °C, the bonding strength at this temperature was maintained at about 12 MPa. For cured adhesive without calcination, its bonding strength could be maintained above 5 MPa during the whole heating process, which made it to have direct application in practice after curing.  相似文献   

13.
An ultrasonic fatigue testing system capable of operating at temperatures up to 1000 °C has been developed and utilized to study the fatigue behavior of a single crystal superalloy (PWA 1484) at a temperature of 1000 °C and loading frequency of approximately 20 kHz. The stress-life data generated from the ultrasonic testing system were comparable to those from conventional servo-hydraulic fatigue tests for similar single crystal alloys. Interior Ta-rich carbides were the major microstructural feature responsible for crack initiation in the alloy. Crack growth under ultrasonic loading frequency at 1000 °C for PWA 1484 occurred in a crystallographic manner on {1 1 1} octahedral slip planes, in contrast to the normal Mode-I growth mode typically observed for single crystal superalloys at high temperature (>850 °C) with conventional servo-hydraulic loading frequencies (<100 Hz).  相似文献   

14.
It was shown that the measured average fatigue striation spacings predicted the fatigue crack growth rates for low alloy ferritic steels to within a range of ±2% to 35% with an overall average error band value of ±10.1%. When we consider the fatigue stress range this average error was reduced to only some ±4%. This was good news to both failure analysts and other workers involved in the field of component remnant life and life extension since such predicted fatigue stress ranges use real fracture characteristics observed at some point on the actual component fracture surface.These findings were applied to a real cracking problem recently reported in a steam raising plant, viz., a cracked attemperator reducer weld. In this case an NDT assessment indicated that the maximum crack depth was 7 mm while the lower bound critical crack depth was estimated at 10 mm. As such, remnant life assessments can be estimated for a series of fatigue stress ranges through the use of a reported 450 °C fatigue crack growth law for C–Mn steels.Remnant life estimates of a 7 mm deep crack for a range of stress ranges varied from 3000 to 4000 starts where the chances of the real remnant life values being greater than the calculated values was only 1 in 2. However when a realistic failure probability which reflected the serious implications of a failure event of E?4 was taken the remnant life values were reduced to around 100 starts or some 6 months of normal service.  相似文献   

15.
The effect of Cu–Mg cluster size and number density on the fatigue fracture behavior of Al–Cu–Mg alloy with various aging conditions was investigated by means of transmission electron microscopy (TEM), atom probe tomography (APT), scanning electron microscopy (SEM) and fatigue testing. Results showed that the fatigue crack propagation (FCP) resistances of 170 °C/1 h and 170 °C/8 h samples were higher than that of 170 °C/0.5 h sample due to increased number density of great size Cu–Mg co-clusters (>50 atoms). These large clusters were harder to dissolve during cycle deformation, thus reduced the cyclic softening effect and enhanced the FCP resistance. Moreover, as aging prolonged, the critical shear stress (τm) of co-clusters by modulus hardening increased from 10.2 (MPa) in 170 °C/0.5 h sample to 12.4 in 170 °C/1 h sample and 12.1 in 170 °C/8 h sample. Thus the force required for the movement of dislocations impeded by co-clusters, as well as the resistance of FCP caused by co-clusters, in 170 °C/1 h and 170 °C/8 h sample was higher than that in 170 °C/0.5 h sample. The 170 °C/8 h sample possessed the lower FCP resistance than 170 °C/1 h sample because of the existence of S′ phase. S′ phase was a kind of semi-coherent unshearable precipitate and hence reduced the planar-reversible slip.  相似文献   

16.
Fastener load-transferred experiments and fatigue tests of the scarfed lap riveted joints with different lap angle were carried out. The fracture surfaces were observed by optical microscope (OM) in this paper. Both experimental and computational studies were described and compared when possible. Based on the qualitative finite element analysis (FEA), the multi-axial fatigue life of the scarfed lap riveted joints has been predicted by Smith–Watson–Topper (SWT) method and Wang–Brown (WB) method respectively. Both of the test results and predicted results show that fatigue life of scarfed lap riveted joints is remarkably increased after introducing lap angle into the faying surface. 8 mm-thick specimens with the lap angle of 1.68 °C exhibit the best fatigue performance, and 20 mm-thick with the lap angle of 3.37 °C do in the present study. Compared with the result of WB theory, the result of SWT theory is more conservative and reliable. For structures’ reliability designs, SWT theory and WB theory are all fallibility.  相似文献   

17.
The changes that can occur in glass fibre reinforced polymer (GFRP) composites with ageing can affect its application, performance and lifetime. Hygrothermal ageing (i.e. accelerated ageing by moisture absorption and temperature change) is a very useful technique to evaluate durability as well as development of GFRP composites in a reasonable timeframe. Dynamic mechanical thermal analysis (DMTA) is essentially able to detect all changes in the state of molecular motion in polymer composites as temperature is scanned. In this work, pultruded GFRP rebars were accelerated aged in an alkaline aqueous environment at 60 °C for 1, 2, 3, 4 and 6 months to evaluate the changes in glass transition of viscoelastic GFRP rebars by DMTA. Five different glass transitions in an average temperate range from 110 to 165 °C were observed at storage modulus, loss modulus and damping factor traces of DMTA. It was also found that glass transition temperature (Tg) of the aged samples changed up to maximum 6 °C compared with that of controlled sample. This change in Tg with ageing time was believed to be due to moisture absorption by rebars.  相似文献   

18.
At 300 °C, when dynamic strain ageing takes place, the fatigue life of AISI 316L for lower strain amplitudes is lower than under equivalent conditions at 20 °C. Exhaustive examination of the changes in: (1) apparent elastic modulus, (2) microstructural condition, and (3) fractographic features has been performed to reveal the reason for the life reduction. The analysis of apparent elastic modulus variations and the results of fractographic observations show that the propagation rates for fatigue cracks at 20 °C are faster than for 300 °C. Crack initiation however occurs earlier at 300 °C, in particular for lower strain amplitude tests, due to the activity of localised deformation bands as a consequence of cyclic loading. In addition to persistent slip bands, a form of ladder-free deformation bands is also present at 300 °C, in particular at low strain amplitudes. When the fatigue life is rather short, the influence of the ladder-free deformation bands on cyclic endurance is negligible. The ladder-free type of localised bands have a strong influence on crack initiation once the material endurance increases with lowering strain amplitude, leading to the relative life reduction at the elevated temperature. In addition, the incidence of secondary cyclic hardening for lower strain amplitude tests at 300 °C partly contributes to the more evident life reduction. The influence of dislocation walls on the propagation of microstructurally short fatigue cracks is also examined.  相似文献   

19.
Fatigue strength and life of weldment at high temperatures are important for the materials in power plants. The fatigue crack growth rate is accelerated by oxidation. Similarly, the high-temperature fatigue life is influenced by oxidation. The base metal, the weld metal and the heat-affected zone (HAZ) of the P122 (Cr–Mo steel) weldment were oxidized between 600 °C and 700 °C for up to 500 h in air, and their oxidation behavior was examined. The oxidation resistance increased in the order of HAZ, base metal and weld metal. The scales were mainly Fe2O3. Fatigue tests were performed to measure the fatigue crack growth rate in the range of low stress intensity factor, and the results are discussed from the viewpoint of different microstructures and oxidation.  相似文献   

20.
In this study, strain rate and low temperature dependencies of the viscoelastic behaviour of the T700GC/M21 composite material are characterised and analysed. Dynamic tests for various environmental temperatures are performed on hydraulic jack equipped with an environmental chamber. Three speeds, between 8.33 · 10−4 m s−1 and 0.5 m s−1, at three temperatures (20 °C, −40 °C and −100 °C) are tested. The increase of the shear modulus with the decrease of the temperature is more pronounced between −40 °C and −100 °C than between 20 °C and −40 °C. Complementary DMA (Dynamic Mechanical Analysis) tests are performed on the M21 epoxy resin to characterise the viscoelastic behaviour of the matrix which contributes to the viscoelastic behaviour of the laminate. DMA tests highlight a low temperature transition called β transition (−67 °C for the 1 Hz test) which is responsible of the larger increase of the storage modulus, for the epoxy matrix, between −40 °C and −100 °C. Consequently the β transition could also be at the origin, for the composite, of the observed larger increase of the shear modulus with respect to the strain rate, for strain rates higher than 10 s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号