首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A model for the ultimate tensile strength of unidirectional fiber-reinforced brittle matrix composite is presented. In the model, transverse matrix crack spacing and change in debonding length between the fiber and the matrix is continuously monitored with increasing applied load. A detailed approximate stress analysis, together with a Weibull failure statistics for fiber fracture, are used to determine the probability of fiber fracture and fiber fracture location in the composite. Results of the model are consistent with experimental data. It is suggested from the results that the strength and toughness of the composite are significantly influenced by the Weibull modulus of the fiber and the fiber/matrix interfacial shear stress. A higher fiber Weibull modulus results in a lower composite strength while a higher fiber/matrix interfacial shear stress results in a composite with higher strength but lower toughness. A moderate variation in matrix strength and fiber/matrix interfacial shear strength does not significantly affect the strength of the composite.  相似文献   

2.
3.
4.
Results of uni-axial tensile testing of multi phase 800 High Yield strength steel (MP800HY) at different strain rates (0.001–750 s−1) are reported here. Flat specimens having gauge length 10 mm, width 4 mm and thickness 2 mm were tested to determine the mechanical properties of MP800HY under tensile loads. The quasi-static tests (0.001 s−1) were performed on electromechanical universal testing machine, whereas, hydro-pneumatic machine and modified Hopkinson bar apparatus were used for testing at intermediate (5 s−1, 25 s−1) and high strain rates (250 s−1, 500 s−1, 750 s−1) respectively. Based on the experimental results, the material parameters of existing Cowper–Symonds and Johnson–Cook models are determined. These models fit the experimental data well in the plastic zone. The fracture surfaces of the broken specimens are studied from their fractographs taken by scanning electron microscope (SEM).  相似文献   

5.
6.
Specimen-size effect and notch-size effect on the tensile strength of woven fabric carbon/epoxy laminates are evaluated and modeled. For two different layups of [(0/90)12] and [(±45)2/(0/90)5]S, respectively, static tension tests were performed on two-dimensional geometrically similar unnotched and double-edge notched specimens scaled to three different sizes. Experimental results demonstrate that the notched strength of the woven CFRP laminates depend on the size of specimen as well as the size of notch. The ratio of notched strength to unnotched strength decreases as the length of notch increases, regardless of the size of specimen. For a given size of notch, the notch strength ratio becomes larger with decreasing size of specimen. A notch-size effect law is derived by means of the Neuber interpolation method. A specimen-size effect is embedded into the notch sensitivity parameter involved by the notch-size effect law to establish a size effect law that can cope with these two kinds of size effect. The engineering size effect law proposed can adequately describe the specimen-size effect as well as notch-size effect on the tensile strength of the woven CFRP laminates. It is also demonstrated that the size effect law allows determining the size independent fracture toughness on the basis of notched strengths of small specimens that fail in a quasi-brittle manner.  相似文献   

7.
High productivity can be achieved in the fabrication of composite laminates if molded edges are used. In this work, the fabrication process of laminates with this type of edge finishing is described. The stacking sequence effect for laminates with molded edges is experimentally studied and compared to that of laminates with machined edges. The tensile strengths of five different laminates fabricated with carbon/epoxy unidirectional tape and woven fabrics were measured. It is shown that the strength of laminates with molded edges is about 10% lower than that of laminates with machined edges but less sensitive to stacking sequence. The presence of small pockets of pure resin near the free edge of laminates with molded edges causes a reduction in the tensile strength. The stacking sequence effect may be very pronounced for laminates with woven fabric layers and machined edges.  相似文献   

8.
The volume effect and stress heterogeneity effect (i.e., the effect of loading type) on the ultimate strength are analyzed for fiber-reinforced composites. The main failure mechanisms are assumed to be fiber breakage and fiber pull-out. Depending on the load redistribution around a broken fiber, two different regimes can be obtained. The results are applied to the prediction of ultimate strengths of SiC fiber-reinforced composites subjected to tension, pure flexure and three-point flexure.  相似文献   

9.
Epoxy resins are important matrices for composites. Carboxylic nitrile-butadiene nano-rubber (NR) particles are employed to improve the tensile strength and fracture toughness at 77 K of diglycidyl ether of bisphenol-F epoxy using diethyl toluene diamine as curing agent. It is shown that the cryogenic tensile strength and fracture toughness are simultaneously enhanced by the addition of NR. Also, the fracture toughness at room temperature (RT) is enhanced by the addition of NR. On the other hand, the tensile strength at RT first increases and then decreases with further increasing the NR content up to 5 phr. 5 phr NR is the proper content, which corresponds to the simultaneous enhancements in the tensile strength and fracture toughness at RT. Moreover, the comparison of mechanical properties between 77 K and room temperature indicates that the tensile strength, Young’s modulus and fracture toughness at 77 K are higher than those at RT but the failure strain shows the opposite results. The results are properly explained by the SEM observation.  相似文献   

10.
通过有限元方法研究了相同孔隙率下孔隙的分布、尺寸和形状等微观特征对碳纤维增强环氧树脂复合材料单向板横向拉伸强度的影响。首先使用Matlab对复合材料微观图像进行处理,提取孔隙的半径分布。然后通过C++编写多种孔隙随机分布算法,包括可以生成不同分布孔隙、不同尺寸孔隙以及不同形状孔隙的随机分布算法。最后通过Python参数化生成代表性体积单元(RVE),用有限元方法研究相同孔隙率下孔隙的分布、尺寸和形状对碳纤维/环氧树脂复合材料单向板横向拉伸强度的影响。研究结果显示,孔隙率相同时,碳纤维/环氧树脂复合材料的孔隙形状对横向弹性模量的影响较大,孔隙尺寸和形状对横向拉伸强度有较大的影响。  相似文献   

11.
The aim of this study is to characterize the damping properties of carbon fiber-reinforced interleaved epoxy composites. Several types of thermoplastic-elastomer films, such as polyurethane elastomers, polyethylene-based ionomers and polyamide elastomers were used as the interleaving materials. The damping properties of the composite laminates with/without the interleaf films were evaluated by the mechanical impedance method. Also, the effects of the lay-up arrangements of the carbon-fiber prepregs on the damping properties of the interleaved laminates were examined. The viscoelastic properties of interleaved polymer films were reflected in the damping properties of the corresponding interleaved laminates. The loss tangent of the interleaf films at the test temperature played an important roll in the loss factor of the interleaved laminates. Also, the stiffness of the films at the resonant frequency of the laminates was another important parameter that controlled the loss factor of the interleaved laminates.  相似文献   

12.
This research investigated direct tensile stress versus strain response of ultra-high-performance fiber-reinforced concrete (UHPFRC) with various sizes and geometries. The UHPFRC in this research contained 1% macro twisted and 1% micro smooth steel fibers by volume. The effects of gauge length, section area, volume and thickness of the specimens on the measured tensile response of the UHPFRC were experimentally discovered. The different sizes and geometries of specimens did not generate significant influence on the post cracking strength of UHPFRC whereas they produced clear effects on the strain capacity, energy absorption capacity and multiple cracking behavior of UHPFRC. The strain capacity, energy absorption capacity and the number of multiple micro cracks within unit length obviously decreased as the gauge length, section area and volume of UHPFRC specimens increased. In contrast, as the thickness of the specimen increased, different tendency was observed.  相似文献   

13.
The tensile fatigue behavior of unidirectional carbon fiber-reinforced thermoplastic and thermosetting laminates was examined at room temperature. Tension-tension cyclic fatigue tests were conducted under load control at a sinusoidal frequency of 10 Hz to obtain stress-fracture cycles (S-N) relationship. The fatigue limits of carbon fiber-reinforced thermoplastic laminates (CF/PA6) and thermosetting laminates (CF/Epoxy) were found to be 28.0 MPa (48% of the tensile strength) and 56.2 MPa (63% of the tensile strength), respectively. Two types (in constant and incremental loading way) of loading-unloading low cycle fatigue tests were employed to investigate the modulus history of fatigue process for announcing the fatigue mechanism. The residual tensile strength of specimens that survived fatigue loading maintained with the increase of fatigue cycles and applied stress. Examination of the fatigue-loaded specimens revealed that the more flexible/ductile trend of resins and the formation of micro-cracks at the interface between fiber and matrix was facilitated during high fatigue loading (⩾fatigue limit stress), while no interfacial/matrix damage in resins was detected during low fatigue loading (<fatigue limit stress), which was consider to be the governing mechanism of strength maintain during fatigue loading.  相似文献   

14.
In conventional bend tests on hardmetal specimens with a rectangular cross-section the strength values exhibit a wide scatter as a result of fracture being initiated from pores and inclusions. A new bend test-piece geometry has been devised which subjects a relatively small volume of material to a high tensile stress and so reduces the probability of fracture starting from defects. The test gives reproducible results with low scatter, and, by suppressing defect initiated failures, it enables a more accurate assessment to be made of the effect of metallurgical variables, such as grain-size and composition, on strength.  相似文献   

15.
The dynamic tensile properties of carbon fiber (CF) composite loaded in the matrix-dominant direction are experimentally determined. In this study, thermoplastic epoxy resin is used as a matrix of the CF composite. A dynamic tensile test is performed using a tension-type split Hopkinson bar technique. The experimental results show that there are not linear relationships between tensile strength and strain rate in case of the 10°, 30° and 45° specimens, although the tensile strength of CF composite, whose matrix is typical thermosetting epoxy resin, linearly increases with the strain rate for all fiber orientation angles. From the fracture surface observation, it is found that the ductile fracture of the matrix can be observed only when 10° off-axis specimen is tested under dynamic loading condition. It is inferred that the softening of the thermoplastic epoxy resin in the vicinity of interface area takes place with increasing strain rate.  相似文献   

16.
The effects of nanoclay inclusion on cyclic fatigue behavior and residual properties of carbon fiber-reinforced composites (CFRPs) after fatigue have been studied. The tension–tension cyclic fatigue tests are conducted at various load levels to establish the S-N curve. The residual strength and modulus are measured at different stages of fatigue cycles. The scanning electron microscopy (SEM) and scanning acoustic microscopy (SAM) are employed to characterize the underlying fatigue damage mechanisms and progressive damage growth. The incorporation of nanoclay into CFRP composites not only improves the mechanical properties of the composite in static loading, but also the fatigue life for a given cyclic load level and the residual mechanical properties after a given period of cyclic fatigue. The corresponding fatigue damage area is significantly reduced due to nanoclay. Nanoclay serves to suppress and delay delamination damage growth and eventual failure by improving the fiber/matrix interfacial bond and through the formation of nanoclay-induced dimples.  相似文献   

17.
为研究由于材料固化产生的热残余应力对碳纤维增强环氧树脂复合材料横向拉伸性能预测结果的影响,发展了一种基于摄动算法的纤维和孔洞随机分布代表性体积单元(RVE)生成方法,建立更加接近真实材料微观结构的RVE模型。通过施加周期性边界条件,并赋予组分(纤维、基体和界面)材料本构关系,进而实现温度和机械荷载下模型的热残余应力和损伤失效分析。从结果中发现,材料固化过程会在纤维之间产生残余压应力,在模型孔隙周围产生沿加载方向的残余拉应力。所建立不含孔隙RVE模型的失效均是由于界面脱黏引起,材料固化在纤维之间产生的残余压应力会增加模型的预测强度。含有孔隙的RVE模型失效起始于孔隙周围的基体中,而材料固化在模型孔隙周围产生的热残余拉应力对含孔隙RVE模型预测的失效强度有降低作用。对于具有不同孔隙尺寸的RVE模型,模型的失效强度随着孔隙尺寸的增加而不断降低,但是热残余应力减弱了孔隙尺寸对模型预测结果的降低作用。对于具有不同长宽比椭圆形孔隙的RVE模型,热残余应力增加了孔隙长宽比对模型强度的降低作用。   相似文献   

18.
Bamboo fiber-reinforced epoxy composites were fabricated with untreated and alkali treated bamboo fibers. Dielectric, electric modulus, ac, and dc conductivity studies were carried out to rationalize the dielectric behavior of bamboo/epoxy composites. Composites of two fiber orientation parallel and perpendicular to the electric field were prepared. The dielectric behavior and electric modulus spectra of the composites were characterized using standard impedance analyzer. Dielectric properties were analyzed as a function of frequency (95 Hz–2 MHz) for temperatures in the range from 30 to 180 °C. Real part of dielectric constant (ε′), conductivity, and dielectric dissipation factor (tan δ) of 0° oriented bamboo/epoxy composites were higher than that of 90° oriented composites. Conductivity activation energy, tan δ, ε′, and volume resistivity decreased with increase in frequency at all the temperatures under study. Mercerization reduces the water absorption in bamboo fibers and thus improves corresponding dielectric properties of composites. Relaxation times 39.80 μs and 258.5 μs for 0° and 90° oriented bamboo/epoxy composites were calculated respectively from the relaxation peaks observed in electric modulus spectra at 180 °C.  相似文献   

19.
This paper summarizes the results of a study on the effects of composite microstructure and test temperature on tensile deformation and fracture behavior of a symmetric [0/90]2s titanium alloy metal-matrix composite. Matrix microstructure is controlled by heat treatment, which is used to produce metastable or Widmanstatten + microstructures. The sequence of damage initiation and evolution at both room and elevated temperature (650°C) is identified using ex-situ scanning electron microscopy observations during incremental monotonic loading to failure. The nature, sequence and complexity of damage during uniaxial loading is presented and discussed in light of competing and mutually interactive influences of load level and deformation characteristics of the microstructure.  相似文献   

20.
《Composites Part A》2000,31(11):1203-1214
The effects of fiber surface treatment on ultimate tensile strength (UTS) of unidirectional (UD) epoxy resin matrix composites are examined experimentally. The interfacial shear strength (IFSS) and statistical fiber strength are significantly altered by five different kinds of surface treatments, which are: (a) unsized and untreated; (b) γ-glycidoxypropyltrimethoxysilane (γ-GPS); (c) γ-methacryloxypropyltrimethoxysilane (γ-MPS); (d) mixture of γ-aminoxypropyltrimethoxysilane (γ-APS), film former (urethane) and lubricant (paraffin); and (e) urethane-sized. The maximum UTS is obtained for the relatively strong interfacial adhesion (glass/γ-MPS/epoxy) but not for the strongest interfacial adhesion (glass/γ-GPS/epoxy). The governing micro-damage mode around a broken fiber and the interface region is matrix cracking for γ-GPS treated fibers, and a combination of interfacial debonding and matrix cracking for γ-MPS treated fibers. The micro-damage mode related to the interfacial adhesion strongly affects the fracture process, and thus the UTS of UD composites. The results also indicate that the interfacial adhesion can be optimized for effective utilization of fiber strength for fiber composites. A parameter called “efficiency ratio” of fiber strength in UD composites is proposed to examine and distinguish different effects of IFSS and fiber strength on the UTS of UD composites. The experimental results show that improved UTS of UD composites due to surface treatments mainly result from the increase in fiber strength but not from the modified interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号