首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Native stipe (NS) and microwave treated stipe (MTS) of Flammulina velutipes were utilized for the biosorption of Zn2+ and Pb2+ ions from aqueous solution. The effects of pH, contact time, and initial concentration on the biosorption were studied for each metal separately. The desired pH of aqueous solution was found to be 6.0 for the removal of Zn2+ ions and 5.0 for the removal of Pb2+ ions. The percent removal of both metals was found to increase with the increase in contact time; biosorption equilibrium was established in about 60 min. The maximum biosorption of Zn2+ and Pb2+ ions from single component systems can be successfully described by Langmuir and Freundlich models; the biosorption kinetics can be accurately described by a second-order kinetic model. The present data from these studies confirms that the native and microwave treated forms of Flammulina velutipes stipe have the potential to be used for the biosorption of Zn2+ and Pb2+ ions from aqueous solution. The metal biosorption capacities of NS for Zn2+ and Pb2+ were 58.14 and 151.51 mg g?1, respectively, while the biosorption capacities of MTS for the both metals were 95.24 and 172.41 mg g?1, respectively.  相似文献   

2.
《Ceramics International》2019,45(11):13685-13691
High-performance inductive couplers require Ni-Zn ferrites of high saturation magnetization, Curie temperature, permeability and application frequency. However, for inductive couplers some of these properties run against each other in one ferrite. To balance these requirements, in this work, novel Ni-Zn ferrite ceramics co-doped by Ce3+ and Co2+ ions with chemical formula Ni0.4Zn0.5Co0.1CexFe2-xO4 (x = 0–0.06) were designed and fabricated by a molten salt method. For the acquired ferrites, both Ce3+ and Co2+ ions could come into the lattices. The initially doped Co2+ ions would cause a slightly decreased grain size and dramatically reduced the specimen densification, but the further added Ce3+ ions could effectively inhibit the density reduction, while the grain size continues to dwindle. The additional Ce3+ ions would generate a foreign CeO2 phase in the acquired specimens. The sole doping of Co2+ ions would aggrandize the saturation magnetization of ferrites, but the introduction of Ce3+ ions would cause its decrease. However, with an appropriate doping level, the Ce3+ and Co2+ ions co-doped ferrites could preserve a relatively high saturation magnetization, while the Curie temperature and cut-off frequency of the ferrites are dramatically augmented, although the permeability would be somewhat reduced. The as-acquired ferrites were simulated to apply in inductive couplers, revealing that the devices manufactured by the Ni0.4Zn0.5Co0.1CexFe2-xO4 ferrites had significantly high maximum operating frequency, compared with that of the one manufactured by pure Ni0.5Zn0.5Fe2O4 ferrite.  相似文献   

3.
《分离科学与技术》2012,47(15):3770-3791
Abstract

The present study reports the potential of mango peel waste (MPW) as an adsorbent material to remove Cu2+, Ni2+, and Zn2+ from constituted metal solutions and genuine electroplating industry wastewater. Heavy metal ions were noted to be efficiently removed from the constituted solution with the selectivity order of Cu2+ > Ni2+ > Zn2+. The adsorption process was pH-dependent, while the maximum adsorption was observed to occur at pH 5 to 6. Adsorption was fast as the equilibrium was established within 60 min. Maximum adsorption of the heavy metal ions at equilibrium was 46.09, 39.75, and 28.21 mg g for Cu2+, Ni2+, and Zn2+, respectively. Adsorption data of all the three metals fit well the Langmuir adsorption isotherm model with 0.99 regression coefficient. Release of alkali and alkaline earth metal cations (Na+, K+, Ca2+, Mg2+) and protons H+ from MPW, during the uptake of Cu2+, Ni2+, and Zn2+, and EDX analysis of MPW, before and after the metal sorption process, revealed that ion exchange was the main mechanism of sorption. FTIR analysis showed that carboxyl and hydroxyl functional groups were involved in the sorption of Cu2+, Ni2+, and Zn2+. MPW was also shown to be highly effective in removing metal ions from the genuine electroplating industry effluent samples as it removed all the three metal ions to the permissible levels of discharge legislated by environment protection agencies. This study indicates that MPW has the potential to effectively remove metal ions from industrial effluents.  相似文献   

4.
《Ceramics International》2016,42(10):11535-11542
Multi-component BaTiO3–Bi0.5Na0.5TiO3–Nb2O5 (BBNN) system doped with divalent metal ions (Zn2+, Co2+, Ni2+) was prepared by the conventional solid–state method.The X-ray diffraction patterns revealed all samples exhibited perovskite (P4mm) single phase. The dielectric properties and micro-mechanisms were discussed and validated. Novel theories, based on the characteristics of the different kinds of dielectric polarization, are proposed to explain the dielectric anomalies in the dielectric system. The relationships between microstructure and the dielectric properties were investigated systematically for the first time. The samples doped with 15 mol% Zn2+/Co2+presented good dielectric properties of an ultra-broad temperature stable range (from −50 and >300), high dielectric constant (ε~1925 for Zn2+/ ε~1341 for Co2+) and low dielectric loss (tan δ<0.02) were obtained. These features made the ceramics system have high practical values for miniaturization and harsh environments applications.  相似文献   

5.
《Ceramics International》2022,48(14):20467-20477
Bioactive ceramics such as tricalcium phosphate (TCP) doped with metal ions are often used to replace natural bone in orthopedic and dental function, both in structural and coating applications. Although the addition of different ions to TCP has been correlated with improved mechanical performance, as well as pro-osteogenic and osteointegrative biological activities, the effect of combining different ions in single biomaterial formulations is poorly described. Here, design of experiments (DoE) was used to assess the effect of the addition of three metallic ions - Mn2+, Zn2+ and Fe3+ - to TCP doped with 10 mol% Mg2+, in combinations comprising one, two and three ions with varying ratios. Our results showed that the TCP could be doped by combinations of metallic ions and β-TCP and hydroxyapatite constitute the main crystalline phases. Additionally, the simultaneous effect of metal ions influenced the structural and physical properties of the TCP composite. Overall, for up 1 mol% of Mn2+, up to 3.75 mol% of Zn2+ and more than 2 mol% of Fe3+, compositions 2 and 6, a dense microstructure and good defined grain boundaries improve the mechanical properties. Furthermore, the ion-doped TCP composites, namely the one prepared from equal amounts of substituting ions besides Mg2+, did not elicit a cytotoxic effect indicating that these materials could be of interest for tissue engineering applications.  相似文献   

6.
A Schiff-based fluorescence probe benzene-1,2-dicarbaldehyde bis-benzoyl hydrazide (L) was designed and synthesized. Its sensing behavior toward metal ions has been investigated by absorption and fluorescence spectroscopy. Indicator L showed high selectivity to Zn2+ in various solvents, whereas other metal ions failed to induce response. Especially Cd2+, which has similar chemical properties with Zn2+, can be distinguished from Zn2+ obviously.  相似文献   

7.
《Ceramics International》2022,48(20):29770-29781
The substituted (Ca2+/Cu2+), and co-substituted (Cu2+/Zn2+), (Cu2+/Sr2+), and (Sr2+/Mn2+) β-tricalcium phosphate (β-TCP)-based Ca3-2x(MˊMˊˊ)x(PO4)2 (M = Zn2+, Cu2+, Mn2+ and Sr2+) solid solutions have been synthesized using solid-state route. The powder X-ray diffraction study shows the formation of β-TCP-type structure as the main phase in all solid solutions. The crystal structures and chemical compositions were approved using Fourier-transform infrared (FT-IR) absorption spectra and energy-dispersive X-ray spectrometry (EDX) data, respectively. The unit cell parameters and volume of as-synthesized samples directly depend on the radius of the incorporated ions. The limits of the single-phase solid solutions were found based on the possible occupation of the crystal sites in β-TCP structure. For the divalent ions with small radii, such as Cu2+ or Zn2+, the limit composition was found as Ca2.5710.429–xMˊˊx(PO4)2 for Mˊ and Mˊˊ – Cu2+ and Zn2+. The enlargement of the unit cell by incorporation of Sr2+ allows to extend the limit of solid solutions up to Ca2.5Sr0.5–xx(PO4)2 for Mˊ – Cu2+ or Mn2+. The antibacterial properties were studied on 4 bacteria (S. aureus, P. aeruginosa, E. coli and E. faecalis) and 1 fungus (C. albicans). It has been showed that co-doped Ca2.5Sr0.25Cu0.25(PO4)2 sample exhibits the highest antimicrobial activity resulting in 92%, 96% and 96% inhibition growth rate for S. aureus, P. aeruginosa and E. faecalis, respectively. The antimicrobial properties are strongly related to the occupation of the crystal sites in the β-TCP structure by doping ions.  相似文献   

8.
Adsorption behavior of Zn2+ and Pb2+ ions on kaolinite and clinoptilolite, originating from natural resources, was studied as a function of contact time and concentration. Zn2+ and Pb2+ ions are quickly adsorbed on both minerals and the uptake of the latter is more favored. The uptake of both ions was then examined on kaolinite–MgCO3 and clinoptilolite–MgCO3 mixtures over a metal ions range from 1 to 10 000 mg/L. The sorption behavior of Zn2+ and Pb2+ on pure MgCO3 was also studied. MgCO3 is much more effective in the retention of Zn2+ and Pb2+ ions, in particular at higher concentrations. The large increase in the retarded amounts of both ions was associated with formation of the hydroxy-carbonate phases; namely hydrozincite for Zn2+, and cerussite and hydrocerussite in the case of Pb2+.  相似文献   

9.
For the safe and trouble‐free operation of a manufacturing plant and the safe storage of acrylic, as well as methacrylic monomers, it is important to know the polymerization stability as a function of the process parameters (temperature, oxygen concentration, and impurities, e.g., metal ions). Contamination with metal ions can be caused by the corrosion of steel units. Therefore, the influence of the metal ions Cr3+, Fe3+, Ni2+ and Cu2+ in the concentration range of 0–10 ppm (g g–1) on the polymerization behavior and the oxygen consumption of acrylic and methacrylic acid were examined in this work. It was shown that Cr3+, Ni2+, and Cu2+ ions extend the inhibition period of acrylic acid (AA) and methacrylic acid (MAA) and reduce the O2 consumption. Fe3+ ions, however, cause a decrease of the inhibition period and in the case of AA an increase of the O2 consumption, which leads, in the end, to a faster unintentional polymerization. Therefore, alloys which contain iron should be avoided as far as possible in the construction of AA plants. Fe3+‐ions show the opposite influence towards MAA, here the presence of Fe3+ shows a stabilizing effect.  相似文献   

10.
A new fluorescent Zn2+ chemosensor (3) based on functionalized 8-hydroxylquinoline has been synthesized and characterized. Compound 3 shows weak fluorescence in CH3CN–HEPES buffer solution (50 mM, pH 7.2 v/v = 1:9), but the fluorescence is significantly enhanced upon binding to Zn2+ through a zinc(II)-catalyzed ester hydrolysis reaction to form a highly emissive zinc(II) complex. This suggests that 3 can be served as a typical “switch–on” chemosensor with high selectivity for Zn2+ over other metal ions.  相似文献   

11.
《Ceramics International》2023,49(20):32758-32767
Cyan light-emitting Ce0.985-xZnxO2:0.015 Tb3+ (x = 0 to 0.2) phosphors were synthesized using the ethylenediaminetetraacetic acid-assisted hydrothermal method. The X-ray diffraction and refinement analyses of the prepared phosphors indicated that the formed face-centered cubic structure remained intact even after the doping of large quantities of Zn2+ ions. However, the incorporation of Zn2+ ions increased the Ce3+/Ce4+ ratio, resulting in the enhancement of oxygen vacancies in the prepared phosphors. The generation of oxygen vacancies caused the evolution of a broad photoluminescence emission band ranging from 400 to 525 nm with a characteristic Tb3+ emission of approximately 543 nm. Two-emission regions in Ce0.885Zn0.1O2:0.015 Tb3+ phosphors were utilized for measuring the fluorescence intensity ratio (FIR) as a function of temperature ranging from 303 to 523 K. At 523 K, the FIR values dropped to approximately 40% of the starting temperature value. The variation of FIR values followed the Boltzmann behavior. The Boltzmann fitting demonstrated the feasibility of the present phosphors for temperature sensor applications. The optimum absolute sensor sensitivity of Ce0.885Zn0.1O2:0.015 Tb3+ phosphors was measured to be 0.0043 K−1 at 398 K with a resolution of approximately 1 K−1. Moderate temperature sensitivity, negligible hysteresis loop, and excellent reversibility revealed the suitability of Ce0.885Zn0.1O2:0.015 Tb3+ phosphors for sensing the temperature in various electronic devices.  相似文献   

12.
Single and binary metal systems were employed to investigate the removal characteristics of Pb2+, Cu2+, Cd2+, and Zn2+ by Chlorella sp. HA-1 that were isolated from a CO2 fixation process. Adsorption test of single metal systems showed that the maximum metal uptakes were 0.767 mmol Pb2+, 0.450 mmol Cd2+, 0.334 mmol Cu2+ and 0.389 mmol Zn2+ per gram of dry cell. In the binary metal systems, the metal ions on Chlorella sp. HA-1 were adsorbed selectively according to their adsorption characteristics. Pb2+ ions significantly inhibited the adsorption of Cu2+, Zn2+, and Cd2+ ions, while Cu2+ ions decreased remarkably the metal uptake of Cd2+ and Zn2+ ions. The relative adsorption between Cd2+ and Zn2+ ions was reduced similarly by the presence of the other metal ions.  相似文献   

13.
A new multifunctional linkage Calix-AC-Si is derived from the modification of the p-tert-butylcalix[4]arene derivative with 3-(triethoxysilyl)-propyl isocyanate (TEPIC) and behaves as the first chelated ligand, and the organic polymer polyvinylpyridine (PVPD) is used as the second terminal ligand, whose ternary hybrids of metal ions (Tb3+ and Zn2+) are assembled and possess different luminescent properties. Especially the introduction of Zn2+ in the Tb3+ hybrid system can improve the luminescence of Tb3+.  相似文献   

14.
《Reactive Polymers》1990,12(1):59-73
Eleven novel metal ion-chelating resins based upon porous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) have been prepared by direct reaction of the polymer with ligands containing an amino group. Those species involving a 2-pyridyl-2-imidazole and a 2-aminomethylpyridine proved to be the most interesting and, for comparison, polystyrene resin analogues of these were also produced. As expected from the literature, the above pyridine-containing ligands remained effective for the extraction of Cu2+ down to pH 2. Despite having superficially similar overall physical characteristics (particle size, surface area, porosity) the glycidyl methacrylate-based resins showed remarkably enhanced kinetic behaviour in the batch extraction of base metal ions such as Cu2+, with an extraction half life as low as ∼ 8 minutes, four times faster than a polystyrene-based analogue.In addition the glycidyl methacrylate-based resins displayed superior selectivity in the extraction of particular metal ions from feed liquors containing a mixture of metal ions. The most remarkable separation discovered was that of Cu2+ from Zn2+ where the glycidyl methacrylate-based species with the above ligands achieved essentially quantitative separation of Cu2+, even with Zn2+ present in 250 times excess. Extracted metal ions were rapidly and quantitatively eluted from these resins with 2 M H2SO4, and in the case of Cu2+ an acid strength of only 0.25 M was adequate.  相似文献   

15.
The extraction equilibria of In3+, Ga3, and Zn2+ with bis(4‐ethylcyclohexyl)phosphoric acid (D4ECHPA), bis(4‐cyclohexylcyclohexyl)phosphoric acid (D4DCHPA), and bis(2‐ethylhexyl)phosphoric acid (D2EHPA) were investigated in acidic aqueous sulfate media. The order of extractability of metal ions is D4DCHPA > D2EHPA > D4ECHPA, which corresponds to the lipophilicity (log P) of the extractants. The separation factors, β(In/Ga) and β(Ga/Zn), of D4ECHPA and D4DCHPA are greater or comparable than that of D2EHPA, because of the steric hindrance of the bulky cyclohexyl groups. In3+ can be therefore separated from simulated liquor containing a high concentration of Zn2+ by D4DCHPA.  相似文献   

16.
The transport and separation of Zn2+ and Cd2+ from binary sulfate solutions in a supported liquid membrane using di(2‐ethylhexyl)phosphoric acid (D2EHPA) and 2‐ethylhexylphosphonic acid mono‐2‐ethylhexyl ester (PC88A) as mobile carriers was studied. Batch solvent extraction experiments were conducted to obtain the reaction stoichiometries. Experiments were performed at different metal concentrations (1.4–14.5 mol m?3), metal concentration ratios (0.4–9.2), pH (2–5), and carrier concentrations (0.1–0.6 mol dm?3). A mass transfer model was proposed that considers diffusion in the aqueous feed and strip stagnant layers, and within the membrane. The interfacial reactions were assumed to approach equilibrium instantaneously. It was shown that the proposed model was applicable for binary Zn2+/Cd2+ systems (standard deviation, 5%). The larger separation factors of Zn2+ over Cd2+ with PC88A than D2EHPA under equilibrium (batch solvent extraction) and non‐equilibrium (liquid membrane) conditions were also evaluated and discussed. Copyright © 2003 Society of Chemical Industry  相似文献   

17.

Abstract  

A series of Zn2+ and W6+ doped tin oxide (SnO2) thin films with various dopant concentrations were prepared by spray pyrolysis deposition, and were characterized by X-ray diffraction, atomic force microscopy, contact angle, absorbance, current density–voltage (J–V) and photocurrent measurements. The results showed that W6+ doping can prevent the growth of nanosized SnO2 crystallites. When Zn2+ ions were used, the crystallite sizes were proved to be similar with the undoped sample due to the similar ionic radius between Zn2+ and Sn4+. Regardless of the dopant ions’ type or concentration, the surface energy has a predominant dispersive component. By using Zn2+ dopant ions it is possible to decrease the band gap value (3.35 eV) and to increase the electrical conductivity. Photocatalytic experiments with methylene blue demonstrated that with zinc doped SnO2 films photodegradation efficiencies close to 30% can be reached.  相似文献   

18.
The polarographic behaviour of Zn2+ and CD2+ and their complexes with glycine, N-acetyl and N-benzoylglycine has been studied in DMSO, CH3CN and DMF; the results have been compared with those previously obtained in H2O and C2H5OH. The effect of the solvent properties on the reduction of those systems has been explained in terms of the electron pair donor (EPD) and of electron pair acceptor (EPA) strength of the solvent itself. The higher the donor number (DN), the more negative the E12 value both of the free metal ions and the complexes. Moreover, the stability constants of the complexes, polarographically determined, seem to be related to the acceptor number (AN) of the solvent.  相似文献   

19.
《Ceramics International》2020,46(12):20277-20283
In this study, an orange emitting afterglow phosphor of Zn2SnO4:Eu3+ was fabricated using the co-precipitation & hydrothermal method, and then annealed in Ar atmosphere at 1000 °C. X-ray diffraction, Raman spectra, EDX, fluorescence spectrometer, SEM and TEM were performed to characterize the target products. As revealed from the XRD analysis results, the fabricated product was the cubic inverse spinel structure Zn2SnO4 (JCPDS 24–1470) exhibiting high crystallinity. As confirmed by Raman and EDX spectra, the target product was Zn2SnO4:Eu3+. As Zn2SnO4:Eu3+ was excited at 347 nm, its fluorescence spectra showed the magnetic dipole emission at 589 nm and the electric dipole transition at 610 nm, complying with the transitions of Eu3+ ions from 5D07F1 and 5D07F2. Meantime, Zn2SnO4:Eu3+ phosphors displayed an orange afterglow, and its attenuating characteristics met the exponential equation. Moreover, the optimal doping amount of Eu3+ ions was 15 mol%, and the concentration quenching took place by the cross relaxation. The color coordinate of the product (x = 0.15) was determined as (0.522, 0.4635), and the color purity reached 98.3%.  相似文献   

20.
The dye-sensitized Zn2SnO4 solar cells were treated with Al3+ ions to enhance the power conversion efficiency for the first time. Usually, the surface treatment on photoanodes with Al3+ ions generated an overlayer of Al2O3. For Zn2SnO4 photoanode, another reaction pathway was found. The treatment with Al3+ ions led to decreasing open circuit voltage, and a 22.6% enhancement of efficiency. Mott–Schottky measurements revealed that the flat band of Zn2SnO4 had a positive shift owing to the introduction of Al3+ ions. XPS confirmed that Al3+ ions were introduced into the lattice of Zn2SnO4 and occupied the position of Sn4+, resulting in decreased conduction band edge. TEM demonstrated the size of Zn2SnO4 nanoparticles became larger due to the reaction of Al3+ with Zn2SnO4. Although the adsorption amounts of dyes lowered by 21%, the driving force for electron injection was greatly enhanced as a result of decreased conduction band edge, resulting in significantly enhanced cell efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号