首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In contrast to traditional job-shop scheduling problems, various complex constraints must be considered in distributed manufacturing environments; therefore, developing a novel scheduling solution is necessary. This paper proposes a hybrid genetic algorithm (HGA) for solving the distributed and flexible job-shop scheduling problem (DFJSP). Compared with previous studies on HGAs, the HGA approach proposed in this study uses the Taguchi method to optimize the parameters of a genetic algorithm (GA). Furthermore, a novel encoding mechanism is proposed to solve invalid job assignments, where a GA is employed to solve complex flexible job-shop scheduling problems (FJSPs). In addition, various crossover and mutation operators are adopted for increasing the probability of finding the optimal solution and diversity of chromosomes and for refining a makespan solution. To evaluate the performance of the proposed approach, three classic DFJSP benchmarks and three virtual DFJSPs were adapted from classical FJSP benchmarks. The experimental results indicate that the proposed approach is considerably robust, outperforming previous algorithms after 50 runs.  相似文献   

2.
This paper proposes hybrid differential evolution (HDE) algorithms for solving the flexible job shop scheduling problem (FJSP) with the criterion to minimize the makespan. Firstly, a novel conversion mechanism is developed to make the differential evolution (DE) algorithm that works on the continuous domain adaptive to explore the problem space of the discrete FJSP. Secondly, a local search algorithm based on the critical path is embedded in the DE framework to balance the exploration and exploitation by enhancing the local searching ability. In addition, in the local search phase, the speed-up method to find an acceptable schedule within the neighborhood structure is presented to improve the efficiency of whole algorithms. Extensive computational results and comparisons show that the proposed algorithms are very competitive with the state of the art, some new best known solutions for well known benchmark instances have even been found.  相似文献   

3.
Genetic algorithms and job shop scheduling   总被引:12,自引:0,他引:12  
We describe applications of Genetic Algorithms (GAs) to the Job Shop Scheduling (JSS) problem. More specifically, the task of generating inputs to the GA process for schedule optimization is addressed.

We believe GAs can be employed as an additional tool in the Computer Integrated Manufacturing (CIM) cycle. Our technique employs an extension to the Group Technology (GT) method for generating manufacturing process plans. It positions the GA scheduling process to receive outputs from both the automated process planning function and the order entry function. The GA scheduling process then passes its results to the factory floor in terms of optimal schedules.

An introduction to the GA process is discussed first. Then, an elementary n-task, one processor (machine) problem is provided to demonstrate the GA methodology in the JSS problem arena. The technique is then demonstrated on an n-task, two processor problem, and finally, the technique is generalized to the n-tasks on m-processors (serial) case.  相似文献   


4.
The interest in multimodal optimization methods is increasing in the last years. The objective is to find multiple solutions that allow the expert to choose the solution that better adapts to the actual conditions. Niching methods extend genetic algorithms to domains that require the identification of multiple solutions. There are different niching genetic algorithms: sharing, clearing, crowding and sequential, etc. The aim of this study is to study the applicability and the behavior of several niching genetic algorithms in solving job shop scheduling problems, by establishing a criterion in the use of different methods according to the needs of the expert. We will experiment with different instances of this problem, analyzing the behavior of the algorithms from the efficacy and diversity points of view.  相似文献   

5.
遗传算法求解柔性job shop 调度问题   总被引:8,自引:0,他引:8       下载免费PDF全文
杨晓梅  曾建潮 《控制与决策》2004,19(10):1197-1200
在分析柔性job shop调度问题特点的基础上,提出一种新的求解该问题的遗传算法,即利用编码方法表示各工序的优先调度顺序及工序的加工机器,由此产生可行的调度方案,使得问题的约束条件在染色体中得以体现.所设计的遗传算子不仅能避免非法调度解的出现,保证后代的多样性,而且可使算法具有记忆功能.仿真结果证明了该算法的有效性.  相似文献   

6.
Generating robust and flexible job shop schedules using genetic algorithms   总被引:2,自引:0,他引:2  
The problem of finding robust or flexible solutions for scheduling problems is of utmost importance for real-world applications as they operate in dynamic environments. In such environments, it is often necessary to reschedule an existing plan due to failures (e.g., machine breakdowns, sickness of employees, deliveries getting delayed, etc.). Thus, a robust or flexible solution may be more valuable than an optimal solution that does not allow easy modifications. This paper considers the issue of robust and flexible solutions for job shop scheduling problems. A robustness measure is defined and its properties are investigated. Through experiments, it is shown that using a genetic algorithm it is possible to find robust and flexible schedules with a low makespan. These schedules are demonstrated to perform significantly better in rescheduling after a breakdown than ordinary schedules. The rescheduling performance of the schedules generated by minimizing the robustness measure is compared with the performance of another robust scheduling method taken from literature, and found to outperform this method in many cases.  相似文献   

7.
Dynamic scheduling of manufacturing job shops using genetic algorithms   总被引:2,自引:1,他引:1  
Most job shop scheduling methods reported in the literature usually address the static scheduling problem. These methods do not consider multiple criteria, nor do they accommodate alternate resources to process a job operation. In this paper, a scheduling method based on genetic algorithms is developed and it addresses all the shortcomings mentioned above. The genetic algorithms approach is a schedule permutation approach that systematically permutes an initial pool of randomly generated schedules to return the best schedule found to date.A dynamic scheduling problem was designed to closely reflect a real job shop scheduling environment. Two performance measures, namely mean job tardiness and mean job cost, were used to demonstrate multiple criteria scheduling. To span a varied job shop environment, three factors were identified and varied between two levels each. The results of this extensive simulation study indicate that the genetic algorithms scheduling approach produces better scheduling performance in comparison to several common dispatching rules.  相似文献   

8.
This paper investigates scheduling job shop problems with sequence-dependent setup times under minimization of makespan. We develop an effective metaheuristic, simulated annealing with novel operators, to potentially solve the problem. Simulated annealing is a well-recognized algorithm and historically classified as a local-search-based metaheuristic. The performance of simulated annealing critically depends on its operators and parameters, in particular, its neighborhood search structure. In this paper, we propose an effective neighborhood search structure based on insertion neighborhoods as well as analyzing the behavior of simulated annealing with different types of operators and parameters by the means of Taguchi method. An experiment based on Taillard benchmark is conducted to evaluate the proposed algorithm against some effective algorithms existing in the literature. The results show that the proposed algorithm outperforms the other algorithms.  相似文献   

9.
This paper deals with the no-wait job shop scheduling problem resolution. The problem is to find a schedule to minimize the makespan (\(C_{max}\)), that is, the total completeness time of all jobs. The no-wait constraint occurs when two consecutive operations in a job must be processed without any waiting time either on or between machines. For this, we have proposed two different resolution methods, the first is an exact method based on the branch-and-bound algorithm, in which we have defined a new technique of branching. The second is a particular swarm optimization (PSO) algorithm, extended from the discrete version of PSO. In the proposed algorithm, we have defined the particle and the velocity structures, and an efficient approach is developed to move a particle to the new position. Moreover, we have adapted the timetabling procedure to find a good solution while respecting the no-wait constraint. Using the PSO method, we have reached good results compared to those in the literature.  相似文献   

10.
针对Job-Shop调度问题,将自适应遗传算法与改进的蚂蚁算法融合,提出了自适应遗传算法与蚂蚁算法混合的一种优化算法。首先利用自适应遗传算法产生初始信息素的分布,再运行改进的蚂蚁算法进行求解。该算法既发挥了自适应遗传算法和蚂蚁算法在寻优中的优势,又克服了各自的不足。实验结果表明,该算法在性能上明显优于遗传算法和蚂蚁算法,并且问题规模越大,优势越明显。  相似文献   

11.
In this paper the performance of the most recent multi-modal genetic algorithms (MMGAs) on the Job Shop Scheduling Problem (JSSP) is compared in term of efficacy, multi-solution based efficacy (the algorithm’s capability to find multiple optima), and diversity in the final set of solutions. The capability of Genetic Algorithms (GAs) to work on a set of solutions allows us to reach different optima in only one run. Nevertheless, simple GAs are not able to maintain different solutions in the last iteration, therefore reaching only one local or global optimum. Research based on the preservation of the diversity through MMGAs has provided very promising results. These techniques, known as niching methods or MMGAs, allow not only to obtain different multiple global optima, but also to preserve useful diversity against convergence to only one solution (the usual behaviour of classical GAs). In previous works, a significant difference in the performance among methods was found, as well as the importance of a suitable parametrization. In this work classic methods are compared to the most recent MMGAs, grouped in three classes (sharing, clearing and species competition), for JSSP. Our experimental study found that those new MMGAs which have a certain type of replacement process perform much better (in terms of highest efficacy and multi-solution based efficacy) than classical MMGAs which do not have this type of process.  相似文献   

12.
Journal of Intelligent Manufacturing - Since production efficiency and costs are directly affected by the ways in which jobs are scheduled, scholars have advanced a number of meta-heuristic...  相似文献   

13.
The job-shop scheduling problem with operators (JSO) is an extension of the classic job-shop problem in which an operation must be assisted by one of a limited set of human operators, so it models many real life situations. In this paper we tackle the JSO by means of memetic algorithms with the objective of minimizing the makespan. We define and analyze a neighborhood structure which is then exploited in local search and tabu search algorithms. These algorithms are combined with a conventional genetic algorithm to improve a fraction of the chromosomes in each generation. We also consider two different schedule builders for chromosome decoding. All these elements are combined to obtain memetic algorithms which are evaluated over an extensive set of instances. The results of the experimental study show that they reach high quality solutions in very short time, comparing favorably with the state-of-the-art methods.  相似文献   

14.
Fuzzy flexible job shop scheduling problem (FfJSP) is the combination of fuzzy scheduling and flexible scheduling in job shop environment, which is seldom investigated for its high complexity. We developed an effective co-evolutionary genetic algorithm (CGA) for the minimization of fuzzy makespan. In CGA, the chromosome of a novel representation consists of ordered operation list and machine assignment string, a new crossover operator and a modified tournament selection are proposed, and the population of job sequencing and the population of machine assignment independently evolve and cooperate for converging to the best solutions of the problem. CGA is finally applied and compared with other algorithms. Computational results show that CGA outperforms those algorithms compared.  相似文献   

15.
Scheduling for the job shop is very important in both fields of production management and combinatorial optimization. However, it is quite difficult to achieve an optimal solution to this problem with traditional optimization methods owing to the high computational complexity (NP-hard). Genetic algorithms (GA) have been proved to be effective for a variety of situations, including scheduling and sequencing. Unfortunately, its efficiency is not satisfactory. In order to make GA more efficient and practical, the knowledge relevant to the problem to be solved is helpful. In this paper, a kind of hybrid heuristic GA is proposed for problem n/m/G/Cmax, where the scheduling rules, such as shortest processing time (SPT) and MWKR, are integrated into the process of genetic evolution. In addition, the neighborhood search technique (NST) is adopted as an auxiliary procedure to improve the solution performance. The new algorithm is proved to be effective and efficient by comparing it with some popular methods, i.e. the heuristic of neighborhood search, simulated annealing (SA), and traditional GA.  相似文献   

16.
Manufacturing job shop scheduling is a notoriously difficult problem that lends itself to various approaches - from optimal algorithms to suboptimal heuristics. We combined popular heuristic job shop-scheduling approaches with emerging AI techniques to create a dynamic and responsive scheduler. We fashioned our job shop scheduler's architecture around recent holonic manufacturing systems architectures and implemented our system using multiagent systems. Our scheduling approach is based on evolutionary algorithms but differs from common approaches by evolving the scheduler rather than the schedule. A holonic, multiagent systems approach to manufacturing job shop scheduling evolves the schedule creation rules rather than the schedule itself. The authors test their approach using a benchmark agent-based scheduling problem and compare performance results with other heuristic-scheduling approaches.  相似文献   

17.
Job shop scheduling problem is a typical NP-hard problem. To solve the job shop scheduling problem more effectively, some genetic operators were designed in this paper. In order to increase the diversity of the population, a mixed selection operator based on the fitness value and the concentration value was given. To make full use of the characteristics of the problem itself, new crossover operator based on the machine and mutation operator based on the critical path were specifically designed. To find the critical path, a new algorithm to find the critical path from schedule was presented. Furthermore, a local search operator was designed, which can improve the local search ability of GA greatly. Based on all these, a hybrid genetic algorithm was proposed and its convergence was proved. The computer simulations were made on a set of benchmark problems and the results demonstrated the effectiveness of the proposed algorithm.  相似文献   

18.
A hybrid genetic algorithm for the job shop scheduling problems   总被引:19,自引:0,他引:19  
The Job Shop Scheduling Problem (JSSP) is one of the most general and difficult of all traditional scheduling problems. The goal of this research is to develop an efficient scheduling method based on genetic algorithm to address JSSP. We design a scheduling method based on Single Genetic Algorithm (SGA) and Parallel Genetic Algorithm (PGA). In the scheduling method, the representation, which encodes the job number, is made to be always feasible, the initial population is generated through integrating representation and G&T algorithm, the new genetic operators and selection method are designed to better transmit the temporal relationships in the chromosome, and island model PGA are proposed. The scheduling methods based on genetic algorithm are tested on five standard benchmark JSSP. The results are compared with other proposed approaches. Compared to traditional genetic algorithm, the proposed approach yields significant improvement in solution quality. The superior results indicate the successful incorporation of a method to generate initial population into the genetic operators.  相似文献   

19.
Using genetic algorithms in process planning for job shop machining   总被引:4,自引:0,他引:4  
This paper presents a novel computer-aided process planning model for machined parts to be made in a job shop manufacturing environment. The approach deals with process planning problems in a concurrent manner in generating the entire solution space by considering the multiple decision-making activities, i.e., operation selection, machine selection, setup selection, cutting tool selection, and operations sequencing, simultaneously. Genetic algorithms (GAs) were selected due to their flexible representation scheme. The developed GA is able to achieve a near-optimal process plan through specially designed crossover and mutation operators. Flexible criteria are provided for plan evaluation. This technique was implemented and its performance is illustrated in a case study. A space search method is used for comparison  相似文献   

20.
This paper presents a two-stage genetic algorithm (2S-GA) for multi-objective Job Shop scheduling problems. The 2S-GA is proposed with three criteria: Minimize makespan, Minimize total weighted earliness, and Minimize total weighted tardiness. The proposed algorithm is composed of two Stages: Stage 1 applies parallel GA to find the best solution of each individual objective function with migration among populations. In Stage 2 the populations are combined. The evolution process of Stage 2 is based on Steady-State GA using the weighted aggregating objective function. The algorithm developed can be used with one or two objectives without modification. The genetic algorithm is designed and implemented with the GALIB object library. The random keys representation is applied to the problem. The schedules are constructed using a permutation with m-repetitions of job numbers. Performance of the proposed algorithm is tested on published benchmark instances and compared with results from other published approaches for both the single objective and multi-objective cases. The experimental results show that 2S-GA is effective and efficient to solve job shop scheduling problem in term of solution quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号