首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A neutronics feasibility study has been performed to determine the enrichment that would be required to convert a commercial Miniature Neutron Source Reactor (MNSR) from HEU (90.2%) to LEU (<20%) fuel. Two LEU cores with uranium oxide fuel pins of different dimensions were studied. The one has the same dimensions as the current HEU fuel while the other has the dimensions as the special MNSR, the In-Hospital Neutron Irradiator (INHI), which is a variant of the MNSR. The LEU cores that were studied are of identical core configuration as the current HEU core, except for potential changes in the design of the fuel pins. The following reactor core physics parameters were computed for the two LEU fuel options; clean cold core excess reactivity (ρex), control rod (CR) worth, shut down margin (SDM), neutron flux distributions in the irradiation channels and kinetics data (i.e. effective delayed neutron fraction, βeff and prompt neutron lifetime, lf). Results obtained are compared with current HEU core and indicate that it would be feasible to use any of the LEU options for the conversion of NIRR-1 in particular from HEU to LEU.  相似文献   

2.
原型微堆低浓化初步研究   总被引:2,自引:2,他引:0  
利用蒙特卡罗计算程序,对高浓铀为燃料的原型微堆的有效增殖因数、控制棒价值、上铍反射层价值以及辐照座内的中子注量率等参数进行了计算。将计算值与实验结果进行了比较,两者基本相符。在原型微堆堆芯尺寸保持不变的情况下,将堆芯燃料元件芯体用富集度为12.5%UO2替换UAl和用锆包壳替换铝包壳,对堆芯燃料低浓化方案进行了计算,给出了方案的计算结果。并利用RELAP5程序计算了原型微堆低浓铀堆芯阶跃引入4.0 mk反应性情况下反应堆的相关参数。  相似文献   

3.
Neutronic analyses for the core conversion of Pakistan research reactor-2 (PARR-2) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel has been performed. Neutronic model has been verified for 90.2% enriched HEU fuel (UAl4–Al). For core conversion, UO2 fuel was chosen as an appropriate fuel option because of higher uranium density. Clad has been changed from aluminum to zircalloy-4. Uranium enrichment of 12.6% has been optimized based on the design basis criterion of excess reactivity 4 mk in miniature neutron source reactor (MNSR). Lattice calculations for cross-section generation have been performed utilizing WIMS while core modeling was carried out employing three dimensions option of CITATION. Calculated neutronic parameters were compared for HEU and LEU fuels. Comparison shows that to get same thermal neutron flux at inner irradiation sites, reactor power has to be increased from 30 to 33 kW for LEU fuel. Reactivity coefficients calculations show that doppler and void coefficient values of LEU fuel are higher while moderator coefficient of HEU fuel is higher. It is concluded that from neutronic point of view LEU fuel UO2 of 12.6% enrichment with zircalloy-4 clad is suitable to replace the existing HEU fuel provided that dimensions of fuel pin and total number of fuel pins are kept same as for HEU fuel.  相似文献   

4.
Assessment of fuel conversion from high enriched uranium (HEU) to low enriched uranium (LEU) fuel in the Syrian MNSR reactor was conducted in this paper. Three 3-D neutronic models for the Syrian MNSR reactor using the MCNP-4C code were developed to assess the possibility of fuel conversion from 89.87% HEU fuel (UAl4–Al) to 19.75% LEU fuel (UO2). The first model showed that 347 fuel rods with HEU fuel were required to obtain a reactor core with 5.17 mk unadjusted excess reactivity. The second model showed that only 200 LEU fuel rods distributed in the reactor core like the David star figure were required to obtain a reactor core with 4.85 mk unadjusted excess reactivity. The control rod worth using the LEU fuel was enhanced. Finally, the third model showed that distribution of 200 LEU fuel rods isotropically in the 10 circles of the reactor core failed to convert the fuel since the calculated core unadjusted excess reactivity for this model was 10.45 mk. This value was far beyond the reactor operation limits and highly exceeded the current MNSR core unadjusted excess reactivity (5.17 mk).  相似文献   

5.
In this paper, the effect of changes in neutron reflector type on neutronics parameters of Tehran research reactor is analyzed. In this study, at first, calculations for the HEU and LEU fuel configurations of the reactor core in which the light water is used as a neutron reflector in the core is done. Then, by using the reflectors such as graphite, beryllium and heavy water, changes on the neutronic parameters are examined. The results show that by altering the reflector, at HEU core configuration (compared with LEU), more changes appear in parameters such as neutron multiplication factor, average fast and thermal neutron flux, excess reactivity and shut down margin. Moreover, at LEU core configuration, changes are tangible specifically on parameters of cycle length and power peaking factor. In addition, the evaluated fuel temperature coefficient of reactivity is greater at HEU than LEU, while the temperature alteration of fuels represented greater influence on reactivity at LEU configuration.  相似文献   

6.
The Monte Carlo N-Particle (MCNP) code, version 4C (MCNP4C) and a set of neutron cross-section data were used to develop an accurate three-dimensional computational model of the Nigeria Research Reactor-1 (NIRR-1). The geometry of the reactor core was modeled as closely as possible including the details of all the fuel elements, reactivity regulators, the control rod, all irradiation channels, and Be reflectors. The following reactor core physics parameters were calculated for the present highly enriched uranium (HEU) core: clean cold core excess reactivity (ρex), control rod (CR) and shim worth, shut down margin (SDM), neutron flux distributions in the irradiation channels, reactivity feedback coefficients and the kinetics parameters. The HEU input model was validated by experimental data from the final safety analyses report (SAR). The model predicted various key neutronics parameters fairly accurately and the calculated thermal neutron fluxes in the irradiation channels agree with the values obtained by foil activation method. Results indicate that the established Monte Carlo model is an accurate representation of the NIRR-1 HEU core and will be used to perform feasibility for conversion to low enriched uranium (LEU).  相似文献   

7.
通过对235U富集度为19.9%的UO2和U3Si2-Al的弥散体2种燃料进行物理计算,从中筛选出了优化的堆芯方案,并对其静态物理参数,诸如有效倍增因子、绝对中子通量密度、上铍反射层反应性价值、反应性温度系数、控制棒价值等进行了计算。  相似文献   

8.
The Syrian Miniature Neutron Source Reactor (MNSR), a 30 kW, 89.8% HEU fueled (U-Al), went critical in March, 1996. By operating the reactor at nominal power for 2.5 h/day, the estimated core life is 10 years. This paper presents the results of fuel burn-up and depletion analysis of the MNSR fuel lattice using the ORIGEN 2 code. A one-group cross-section data base for the ORIGEN 2 computer code was developed for the Syrian MNSR research reactor. The ORIGEN 2 predicted burn-up dependent actinide compositions of MNSR spent fuel using the newly developed data base show a good agreement with the published results in the literature. In addition, the burn-up characteristics of MNSR spent fuel was analyzed with the new data base. Finally, to study the effect of burn-up on the reactivity, the microscopic cross-sections of the fission products calculated by the WlMS code (using the number densities of fission products generated by the ORIGEN 2 code as a function of burn-up time), were used as an input for the CITATION code calculations. The results contained in this paper could be used in performing criticality safety analysis and shielding calculations for the design of a spent fuel storage cask for the MNSR core.  相似文献   

9.
A comparative study has been performed for neutronic analysis of highly enriched in uranium (HEU) and potential low enriched in uranium (LEU) cores for the Pakistan Research Reactor-2 (PARR-2) taken as a typical miniature neutron source reactor (MNSR) system. The group constant generation has been carried out using transport theory code WIMS-D4 and a detailed five-group RZ-model has been used in the CITATION code for multigroup diffusion theory analysis. The neutronic analysis of the 90% HEU reference and potential LEU alternative: UO2, U3Si2 and U9Mo, cores has been carried out yielding 11%, 20.7% and 14.25% enrichments with corresponding values of excess reactivity: 4.33, 4.30 and 4.07 mk. These results have been found in good agreement with recently reported Monte Carlo-based transport theory calculations. The diffusion theory-based calculated values of thermal flux profiles for axial as well as for radial directions have been found to agree well with the corresponding experimental measurements. The UO2-based LEU core has been found having flux spectrum closest to the reference core while U9Mo core has significantly harder flux spectrum at irradiation site.  相似文献   

10.
Computer simulation was carried out for reactivity induced transients in a HEU core of a tank-in-pool reactor, a miniature neutron source reactor (MNSR). The reactivity transients without scram at initial power of 3 W were studied. From the low power level, the power steadily increased with time and then rose sharply to higher peak values followed by a gradual decrease in value due to temperature feedback effects. The trends of theoretical results were found to be similar to measured values and the peak powers agreed well with experimental results. For ramp reactivity equivalent of clean core cold excess reactivity of 4 mk (4×10−3 Δk/k), the predicted peak power of 100.8 kW agrees favourably with the experimental value of 100.2 kW. The measured outlet temperature of 72.6 °C is also in agreement with the calculated value of 72.9 °C for the release of the core excess reactivity. Theoretical results for the postulated accidents due to fresh fuel replacement of reactivity worth 6.71 mk and addition of incorrect thickness of Be plates resulting in 9 mk reactivity insertion were 187.23 and 254.3 kW, respectively. For these high peak powers associated with these reactivity insertions, it is expected that nucleate boiling will occur within the flow channels of the reactor core.  相似文献   

11.
Presenting neutronic calculations pertaining to the Iranian miniature research reactor is the main goal of this article. This is a key to maintaining safe and reliable core operation. The following reactor core neutronic parameters were calculated: clean cold core excess reactivity (ρex), control rod and shim worth, shut down margin (SDM), neutron flux distribution of the reactor core components, and reactivity feedback coefficients. Calculations for the fuel burnup and radionuclide inventory of the Iranian miniature neutron source reactor (MNSR), after 13 years of operational time, are carried out. Moreover, the amount of uranium burnup and produced plutonium, the concentrations and activities of the most important fission products, the actinide radionuclides accumulated, and the total radioactivity of the core are estimated. Flux distribution for both water and fuel temperature increases are calculated and changes of the central control rod position are investigated as well. Standard neutronic simulation codes WIMS-D4 and CITATION are employed for these studies. The input model was validated by the experimental data according to the final safety analysis report (FSAR) of the reactor. The total activity of the MNSR core is calculated including all radionuclides at the end of the core life and it is found to be equal to 1.3 × 103Ci. Our investigation shows that the reactor is operating under safe and reliable conditions.  相似文献   

12.
《Annals of Nuclear Energy》2002,29(13):1609-1624
After 10 years operation of Pakistan research reactor-2 (PARR-2), a miniature neutron source reactor (MNSR), a beryllium reflector was added to compensate the loss of reactivity due to burn up of fuel. Beryllium shim plates have been placed at the top of the core in a tray provided for this purpose. The control rod was dismantled and withdrawn from the core and the reactor was made subcritical with cadmium shimming. To monitor the neutron population during this experiment, two additional neutron monitoring channels based on BF3 were installed around the core. Measurement of important Parameters such as effective delayed neutron fraction, decay constant, excess reactivity, control rod worth, temperature coefficient of reactivity, thermal neutron flux, cadmium ratio was done after the addition of Be reflector. Increase in reactivity worth due to addition of Be shim was 1.0 mk.  相似文献   

13.
The closed-loop transfer function of Syrian miniature neutron source reactor (MNSR) has been measured experimentally using the prompt jump approximation technique. Analysing the reactor stability behaviour, a physical model has been formulated based on the open-loop (neutronics) transfer function employing the lumped parameter concept to describe the reactor thermohydraulic characteristics. The reactor kinetics is described by the point kinetic model for one-group of delayed neutrons. Inherent internal feedback effect is considered as a single reactivity feedback that represents the coolant temperature effect. Comparison of the analytically derived transfer-function with the experimental one shows good agreement. Stability analysis of the closed-loop transfer function has been made using the Nyquist criterion and Bode diagram. Routh–Hurwitz criterion has been applied to estimate the stability limit of the MNSR closed-loop. The Nyquist and Bode criteria have shown that the MNSR closed-loop transfer function is indeed stable. The Routh–Hurwitz criterion enabled the estimation of the upper limit of temperature feedback coefficient of reactivity. Results indicate that MNSR has high inherently safety features. Various relationships that govern relation amongst reactor variables such as the isothermal reactivity coefficient of moderator temperature, temperature difference across the core and coolant flow rate of the natural circulation and mean time for heat transfer to the coolant have been concluded.  相似文献   

14.
The paper presents the behavior and properties analysis of the low enriched uranium fuel compared with the original high enriched uranium fuel. The MNSR reactor core was modeled with both fuel materials and the reactor behavior was studied during the steady state and abnormal conditions. The MERSAT code was used in the analysis. The steady state thermal hydraulic analysis results were compared with that obtained from the experimental results hold during commissioning the Syrian MNSR. Comparison with experimental data shows that the steady-state behavior of the HEU core was accurately predicted by the MERSAT code calculations. The validated model was then used to analyze LEU cores with two proposed UO2 fuel pin designs. With each LEU core, the steady state and 3.77 mk rod withdrawal transient were run and the results were compared with the available published data in the literatures for the low enriched uranium fuel core. The results reveal that the low enriched uranium fuel showed a good behavior and the peak clad temperatures remain well below the clad melting temperature during reactivity insertion accident.  相似文献   

15.
A full-scale ATHLET system model for the Syrian miniature neutron source reactor (MNSR) has been developed. The model represents all reactor components of primary and secondary loops with the corresponding neutronics and thermal hydraulic characteristics. Under the MNSR operation conditions of natural circulation, normal operation, step reactivity transients and reactivity insertion accidents have been simulated. The analyses indicate the capability of ATHLET to simulate MNSR dynamic and thermal hydraulic behaviour and particularly to calculate the core coolant velocity of prevailing natural circulation in presence of the strong negative reactivity feed back of coolant temperature. The predicted time distribution of reactor power, core inlet and outlet coolant temperature follow closely the measured data for the quasi steady and transient states. However, sensitivity analyses indicate the influence of pressure form loss coefficients at core inlet and outlet on the results. The analysis of reactivity accidents represented by the insertion of large reactivity, demonstrates the high inherent safety features of MNSR. Even in case of insertion of total available cold excess reactivity without scram, the high negative reactivity feedback of moderator temperature limits power excursion and avoids consequently the escalation of clad temperature to the level of onset of sub-cooled void formation. The calculated peak power in this case agrees well with the data reported in the safety analysis report. The ATHLET code had not previously been assessed under these conditions. The results of this comprehensive analysis ensure the ability of the code to test some conceptual design modifications of MNSR's cooling system aiming the improvement of core cooling conditions to increase the maximum continuous reactor operation time allowing more effective use of MNSR for irradiation purposes.  相似文献   

16.
PARR-2 (Pakistan Research Reactor-2), an MNSR (Miniature Neutron Source Reactor) is to be converted from HEU (High Enriched Uranium) to LEU (Low Enriched Uranium) fuel, along with all current MNSRs in various other countries. The purpose of conversion is to minimize the use of HEU for non-proliferation of high-grade nuclear fuel. The present report presents thermal hydraulic and safety analyses of PARR-2 using existing HEU fuel as well as proposed LEU fuel. Presently, the core is comprised of 90.2% enriched UAl4-Al fuel. There are 344 fuel pins of 5.5 mm diameter. The core has a total of 994.8 g of U235. Standard computer code PARET/ANL (version 1992) (Obenchain, 1969) was employed to perform steady-state and transient analyses. Various parameters were computed, which included: coolant outlet, maximum clad surface & maximum fuel centerline temperatures; and peak power & corresponding peak core temperatures resulting from a transient initiated by 4 mK positive reactivity insertion. Results were compared with the reported data in Final Safety Analysis Report (FSAR) (Qazi et al., 1994). It was found that the PARET results were in reasonable agreement with the manufacturer's results. Calculations were also carried out for the proposed LEU core with two suggested fuel pin sizes (5.5 mm and 5.1 mm diameter with 12.6% & 12.3% enrichment, respectively). Comparison of the LEU results with the existing HEU fuel has been made and discussed.  相似文献   

17.
Calculations of the fuel burnup and radionuclide inventory in the Syrian miniature neutron source reactor (MNSR) after 10 years (the reactor core expected life) of the reactor operation time are presented in this paper using the GETERA code. The code is used to calculate the fuel group constants and the infinite multiplication factor versus the reactor operating time for 10, 20, and 30 kW operating power levels. The amounts of uranium burntup and plutonium produced in the reactor core, the concentrations and radionuclides of the most important fission products and actinide radionuclides accumulated in the reactor core, and the total radioactivity of the reactor core were calculated using the GETERA code as well. It is found that the GETERA code is better than the WIMSD4 code for the fuel burnup calculation in the MNSR reactor since it is newer, has a bigger library of isotopes, and is more accurate.  相似文献   

18.
《Annals of Nuclear Energy》2004,31(11):1265-1273
Pakistan Research Reactor (PARR-1) was converted from Highly Enriched Uranium (HEU) to Low Enriched Uranium (LEU) fuel, in 1992. The reactor is running successfully with an upgraded power level of 10 MW. In order to save money on the purchase of costly fresh LEU fuel elements, it is being thought to use some of the less burnt HEU spent fuel elements along with the present LEU fuel elements. In the present study steady-state thermal hydraulics of a proposed mixed fuel core (see Fig. 2) has been carried out. Results show that the proposed core, comprising of 24 LEU and 5 HEU standard fuel elements, with 4 LEU and one HEU control fuel elements, can be safely operated at a power level of 9.86 MW without compromising on safety. Standard computer codes and correlations were employed to compute various parameters, which include: coolant velocity distribution in the core; critical velocity; pressure drop; saturation temperature; temperature distribution in the core and margins to Onset of Nucleate Boiling (ONB), Onset of Flow Instability (OFI) and Departure from Nucleate Boiling (DNB).  相似文献   

19.
Neutronic and thermal hydraulic analyses have been carried out for current core of Pakistan Research Reactor-1 (PARR-1). Comparison was made between calculated and measured key neutronic parameters. Reactor core parameters important for reactor operation and safety have been calculated. Calculated neutronic parameters include: excess reactivity, shut down margin, control rod worth, peak power density location, criticality position, peaking factors, neutron flux in fuel elements and neutron flux at irradiation sites in the core. Calculated thermal hydraulic parameters include: steady-state temperatures and peak temperatures at fuel centerline, clad surface and in water coolant. In order to determine safety margins, heat fluxes at Onset of Nucleate Boiling (ONB), Onset of Flow Instability (OFI) and Departure from Nucleate Boiling (DNB) were determined using standard correlations. After assembling the core, performance of the core was also evaluated by experimentation. The core was assembled and some of the core parameters namely: excess reactivity, shut down margin, control rod worth and flux profile at in-core irradiation sites have been measured. On comparison with experimental data, reasonable agreement has been found between the calculated and the measured parameters.  相似文献   

20.
高功率研究堆低浓化物理特性研究   总被引:1,自引:0,他引:1  
应用FG2DB两维两群扩散燃耗程序和带69群中子截面库的CELL栅元少群参数程序,对高功率研究堆低浓化堆芯进行了物理计算。LEU燃料元件的铀密度为3.6-7.2g/cm3,包壳厚度为0.38-0.56mm。结果表明:改变燃料芯体铀密度或厚度在物理上相当;各堆芯方案的控制棒价值等运行安全有关参数都可以接受。部分计算结果被拟合成线性或二次关系式以便于应用。给出了各堆芯的最小临界值、剩余反应性、运行寿期、快热中子通量和积分通量等物理参数。分析这些参数后指出:当U-235含量提高20%或更多时,LEU堆芯与HEU堆芯的主要物理性能相近,这时快中子通量几乎不受影响,热中子通量的下降率近似正比于元件U-235含量增加率。但由于LEU堆芯运行寿期的延长,对一般同位素生产与燃料元件辐照考验不会有明显影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号