首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.  相似文献   

2.
In this paper, ZnO particles with various morphologies were prepared though a facile solution-based route. The complexes Zn-EG-AC (EG: ethylene glycol; AC: CH3COO groups) obtained by reaction of anhydrous zinc acetate and EG were used as precursors. It is found that the precursor could transform into ZnO in water with no need of assistant of additional alkali as it is sensitive to water. At the same time, it is well dispersed in reaction medium (water and ethanol). Experimental results showed that ZnO particles with various morphologies, such as the hexagonal rings, the hexagonal plates, the tubes, the prisms, and some interesting hierarchical structures, could be obtained by controlling hydrolysis of precursor in water and water/ethanol medium through finely tuning the experimental parameters. The success of shape-controllable fabrication was related intimately with the Zn-EG-AC precursor used in our synthesis.  相似文献   

3.
ZnO (nano)structures remain of great interest in biomedical applications due to their unique properties and possible morphologies. Biocompatibility of typically fabricated ZnO structures remains questionable and they still lack desired biological functions, whence their functionalization is of high interest. In this work, we fabricated micro-sized ZnO hierarchical flower-like structures using facile template-free hydrothermal method to act as carriers for the delivery of gold nanoparticles (Au) and/or Biotin (Vitamin B) to cells. Au nanoparticles (~24 nm), as well as Biotin molecules were successfully deposited on the ZnO surface due to non-covalent physical interactions. We have then cultured two cells lines: SH-SY5Y (human malignant neural) and HEK-293 (human non-malignant) and observed that ZnO hierarchical particles exhibited cell line-dependent cytotoxicity. It appeared that further functionalization of ZnO with Au nanoparticles and subsequently with Biotin led to lower discrepancy between the two cell lines response indicating that cytotoxic pathways of pure ZnO were masked by the available surface adsorbed particles (Au/Biotin). Two-photon immunocytochemistry microscopy further confirmed that Biotin decorated particles affected neuroblastoma cells cytoskeleton. These findings contribute to the understanding of cytotoxic pathways of surface-decorated nano-micro-structures made from ZnO with two molecules typically used in anticancer and regenerative medicine therapies.  相似文献   

4.
In this paper, in order to increase the power conversion efficiency we demonstrated the selective growth of "nanoforest" composed of high density, long branched "treelike" multigeneration hierarchical ZnO nanowire photoanodes. The overall light-conversion efficiency of the branched ZnO nanowire DSSCs was almost 5 times higher than the efficiency of DSSCs constructed by upstanding ZnO nanowires. The efficiency increase is due to greatly enhanced surface area for higher dye loading and light harvesting, and also due to reduced charge recombination by providing direct conduction pathways along the crystalline ZnO "nanotree" multi generation branches. We performed a parametric study to determine optimum hierarchical ZnO nanowire photoanodes through the combination of both length-wise growth and branched growth processes. The novel selective hierarchical growth approach represents a low cost, all solution processed hydrothermal method that yields complex hierarchical ZnO nanowire photoanodes by utilizing a simple engineering of seed particles and capping polymer.  相似文献   

5.
Two exfoliated graphite/ZnO composites, marked as EG/ZnO-1 and EG/ZnO-2, were prepared by heating a mixture of expandable graphite and Zn(OH)2 or a mixture of expanded graphite (EG) and Zn(OH)2, respectively. The composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and nitrogen adsorption. Under UV irradiation, the composites were used for removing methyl blue (MB) from aqueous solution. For the composites made from expandable graphite (EG/ZnO-1), the micronsized ZnO particle agglomerates (1–20 μm) heterogeneously distributed at the surface of graphite flakes, while for the composites made from EG (EG/ZnO-2), the submicron-sized ZnO particle masses (0·2–0·5 μm) almost homogeneously located both at the surface and interior of graphite flakes. In the presence of UV irradiation, the composites had the adsorption capacity of EG and the photocatalysis capacity of ZnO at the same time. Compared with EG/ZnO-1, EG/ZnO-2 was more effective in removing MB. After 2 h of UV irradiation, MB could be completely removed by using the EG/ZnO-2 containing 45% ZnO, and the decomposition efficiency of the ZnO was the primary cause for the removal of MB.  相似文献   

6.
采用静电纺丝法制备了多级中空结构的SnO2纳米纤维, 然后将SnO2纳米纤维置于90℃乙酸锌溶液中, 恒温水浴条件下, 在SnO2纳米纤维上生长了ZnO纳米球, 形成了异质结构的SnO2/ZnO复合纳米纤维。分别通过XRD、SEM、EDX和XPS等表征手段对异质复合纳米纤维SnO2/ZnO材料的结构、形貌及元素含量进行了表征分析。异质结构的SnO2/ZnO复合纳米纤维保持了SnO2纳米纤维多级中空的纤维结构, SnO2纳米纤维长度约为300 nm, 依附于SnO2纤维表面的SnO2纳米颗粒生长的ZnO纳米球直径为250~300 nm。采用静态气体测试系统对异质复合纳米纤维SnO2/ZnO气敏元件的气敏性能进行了测试。测试结果表明: 异质复合纳米纤维SnO2/ZnO气敏元件在最佳工作温度350℃下, 对(0.5~100)×10-6丙酮具有优异的响应灵敏度、较好的选择性和长期稳定性。异质复合纳米纤维SnO2/ZnO中存在于ZnO纳米球与SnO2纳米颗粒间的N-N同型异质结导致复合材料晶界势垒高度的降低, 改善了电子与空穴的输运特性, 促使SnO2/ZnO异质复合纳米纤维的吸附能力大大增强, 从而改善了SnO2/ZnO元件的丙酮敏感特性。  相似文献   

7.
This study deals with the synthesis and characterisation of ZnO nanoparticles and suspension of ZnO-ethylene glycol (EG) nanofluid. Crystalline ZnO nanoparticles are synthesised using the chemical method. The nanofluids were synthesised by the dispersion of ZnO nanoparticles in EG solution using an ultrasonicator. The prepared ZnO nanoparticles are characterised by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and UV-Vis absorption spectrum. The particle size distribution and ultrasonic parameters of the synthesised nanofluid are measured with the help of acoustic particle sizer (APS-100) and ultrasonic interferometer. The observed features of ZnO nanoparticles and ZnO-EG nanofluids are discussed in correlation with known properties of other nanofluids.  相似文献   

8.
We present a two-step electrochemical deposition process to synthesize hierarchical zinc oxide (ZnO) nanorod-nanosheet structures on indium tin oxide (ITO) substrate, which involves electrodeposition of ZnO nanosheet arrays on the conductive glass substrate, followed by electrochemical growth of secondary ZnO nanorods on the backbone of the primary ZnO nanosheets. The formation mechanism of the hierarchical nanostructure is discussed. It is demonstrated that annealing treatment of the primary nanosheets synthesized by the first-step deposition process plays a key role in synthesizing the hierarchical nanostructure. Photovoltaic properties of dye-sensitized solar cells (DSSCs) based on hierarchical ZnO nanostructures are investigated. The hierarchical ZnO nanorod-nanosheet DSSC exhibits improved device performance compared to the DSSC constructed using photoelectrode of bare ZnO nanosheet arrays. The improvement can be attributed to the enhanced dye loading, which is caused by the enlargement of internal surface area within the nanostructure photoelectrode. Furthermore, we perform a parametric study to determine the optimum geometric dimensions of the hierarchical ZnO nanorod-nanosheet photoelectrode through adjusting the preparation conditions of the first- and second-step deposition process. By utilizing a hierarchical nanostructure photoelectrode with film thickness of about 7 μm, the DSSC with an open-circuit voltage of 0.74 V and an overall power conversion efficiency of 3.12% is successfully obtained.  相似文献   

9.
In this paper, hierarchical structured ZnO particles were successfully synthesized via a facile biomineralization process with the template of histidine at room temperature. Detailed microstructural characterization had been carried out using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Role of histidine concentration in the hierarchical ZnO syntheses, including flower-type structure and mineral configuration, had been systematically investigated. Zn2+–histidine interaction was suggested to be the dominant growth factor. The room-temperature Raman spectrum of ZnO flower type revealed good crystal quality and increased Raman scattering. The PL spectrum of ZnO mineral structure showed stronger emission in a wide range of wavelengths.  相似文献   

10.
ZnOHF nanobelts (NBs) were synthesized under microwave irradiation in the presence of ionic liquid, 1,2,3-trimethyl-imidazole tetrafluoroborate. The ranges of width, length and thickness of the NBs are ca. 500-800 nm, several micrometers and 100 nm, respectively. Porous polycrystal ZnO NBs with hierarchical structure were obtained after careful heat treatment of the intermediate ZnOHF at 400 °C for 2 h. The structural characters of the ZnO NBs were investigated by XRD, SEM, TEM, HRTEM and XPS measurements, and their absorption and photoluminescence properties were studied as well. The characterization results support the proposed reaction mechanism that the hierarchical ZnO NBs were produced via ZnOHF intermediate and subsequent removal of one of its decomposition products, ZnF2, by hot water. This may be a facile method to fabricate porous ZnO NBs with hierarchical structure.  相似文献   

11.
We present a novel method for fabricating two-dimensional arrays of zinc oxide (ZnO) nanorod patterns. Vertically aligned ZnO nanostructure patterns were synthesized by hydrothermal growth on a two-dimensional seed layer pattern formed by atomic layer deposition. Various characteristics of ZnO seed films were experimentally studied in order to optimize the fabrication of ZnO rod structures in terms of their uniformity and vertical alignment on the two-dimensional-patterned surfaces. Using these ZnO structures as hierarchical electrodes, we demonstrate that localized electric fields in the proximity of ZnO rod patterns can be used for periodic alignment of liquid crystal molecules, resulting in the optical diffraction grating effect. Process conditions for creating ZnO rod patterns that best enhance diffraction efficiency are further discussed. The current study is the first demonstration of hierarchical ZnO rod patterns as electrodes for optical modulation of a medium. We believe this will be beneficial for future optical applications.  相似文献   

12.
The effect of the addition of very small amount of polyvinyl alcohol (PVA) on the resulting physicochemical properties of ZnO synthesized by ethylene glycol-hydrothermal method was studied. Significant change in particle size distribution and specific surface area can be observed even only 0.02% PVA (w/w) was added into the ethylene glycol (EG) solution, in which the median particle size distribution increased from 5 to 8 nm and at the same time the specific surface area is also increased to nearly 50%. Further addition of PVA resulted in the decrease of the specific surface area due to the formation of agglomeration and aggregation of particles as observed by FESEM study. This study shows that the presence of minute amount of polymer, PVA plays very crucial role in determining the resulting properties of the synthesized ZnO by EG-hydrothermal method.  相似文献   

13.
A series of novel ZnO/polyimide composite films with different ZnO contents was prepared through incorporation hexagonal disklike ZnO particles into poly(amic acid) of the pre polymer of the polyimide. The hexagonal disklike ZnO particles with a diameter of 300-500 nm were synthesized from zinc acetate and NaOH in water with citric acid. The prepared zinc oxide-polyimide composites were characterized for their structure, morphology, and thermal behavior employing Fourier transform infrared spectroscopy, scanning electron micrograph, X-ray diffraction and thermal analysis techniques. Thermal analyses show that the ZnO particles were successfully incorporated into the polymer matrix and these ZnO/polymer composites have a good thermal stability. Scanning electron microscopy studies indicate the ZnO particles were uniformly dispersed in the polymer and they remained at the original size (300-500 nm) before immobilization. All composite films with ZnO particle contents from 1 to 5 wt% show good transparency in the visible region and luminescent properties.  相似文献   

14.
Rose-like ZnO/reduced graphene oxide composites are synthesized by a simple, scalable, and facile route without using any surfactants. The well-defined ZnO microstructure has a hexagonal hierarchical rose-like architecture, which is composed of densely packed uniform thin flakes. The N,N-dimethylformamide/water system employed here acts as an organic solvent as well as a reagent, and two competing reactions give rise to the formation of the hexagonal hierarchical rose-like ZnO architecture. Compared with bare ZnO, the rose-like ZnO/reduced graphene oxide composite displays the fluorescence quenching property. Finally, the as-prepared products possess considerable photocatalytic property under visible light for the degradation of methylene blue.  相似文献   

15.
Zinc oxide (ZnO) nanocrystals were prepared using a wet chemical route starting from zinc acetate dihydrate dissolved in pure ethanol, pure water, and mixtures of ethanol and water. X-ray diffraction (XRD) studies along with thermogravimetric analyses results show that ZnO begins to crystallize at a temperature lower than 100 °C in a starting solution having 1:4 ethanol–water volume ratio. For other starting solutions, ZnO forms above 150 °C. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies confirm the formation of nanoparticles of size ~15–20 nm and XRD analysis shows that the particles crystallize in the wurtzite structure. SEM and TEM studies show that ZnO particles grown in pure ethanol, pure water and in ethanol–water mixtures (other than the 1:4 mixture) have similar morphology, with the nanocrystals forming randomly grouped clusters. In the case of 1:4 solvent, however, the morphology is different, ZnO in this case growing in the form of chain like structures which appear like rods. Room temperature photoluminescence spectra exhibit a strong emission band in the red region probably caused by transitions between deep levels involving zinc interstitials.  相似文献   

16.
Using the guarded hot plate method, we have measured the thermal conductivity of compressed expanded graphite (EG) samples (densities from 0.4 to 1.95 g/cm3) along the compression direction (c axis) in the range 150–675 K and that of EG/epoxy composites (5–75 wt % EG) in the range 150–425 K. We also have measured the specific heat of EG samples at temperatures from 200 to 675 K. Their c-axis thermal diffusivity has been shown to decrease with increasing EG density. The thermal conductivity of the EG/epoxy composites and its variation with EG content are well represented by a rule of mixtures that takes into account the anisotropy in the thermal conductivity of the EG particles and their preferential alignment in the composites.  相似文献   

17.
Dapeng Wu 《Materials Letters》2009,63(12):1057-1060
Unique ZnO microcrystal composed of hierarchical nanorod arrays was successfully prepared by a surfactant-free process in aqueous solution under moderate temperature. The products were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The as-prepared ZnO microstructures are of hexagonal phase and high purity. On the basis of SEM images and parallel experiments, a possible formation mechanism for this ZnO microcrystal with hierarchical nanorod arrays is proposed and the reaction temperatures are found to have great influence on inducing secondary nucleation and the hierarchical growth. In addition, the optical properties of the ZnO samples were also investigated by the photoluminescence (PL) spectrometer.  相似文献   

18.
以硝酸锌、脲素及酒石酸为反应物, 采用水热法制备碱式碳酸锌前驱体微球, 通过煅烧前驱体制备了介孔氧化锌微球。通过扫描电子显微镜(SEM)可以观察到, 氧化锌微球的直径约为2~4 μm, 由大量厚度约为10 nm的介孔纳米片组装而成。X 射线衍射(XRD)和透射电镜(TEM)结果表明: ZnO微球为六方纤锌矿结构, 并结晶较好。比表面积测试(BET)表明ZnO微球为介孔材料, 孔径为20~50 nm, ZnO微球比表面积约为29.8 m2/g。以亚甲基蓝为目标降解物, 对介孔氧化锌微球进行了光催化降解实验。实验结果表明, 所合成的介孔ZnO微球对亚甲基蓝的光催化性能较好。  相似文献   

19.
Graphene aerogels (GAs) anchoring hierarchical, mulberry‐like ZnO particles are fabricated in situ using a one‐step solvothermal reaction. The resulting composites can function as anodes in lithium ion batteries, where they exhibit a high capacity and cyclic stability. The reversible capacities obtained are 365, 320, and 230 mA h g?1 at current densities of 1, 2, and 10 A g?1. Their high reversible capacity is 445 mA h g?1 at a current density of 1.6 A g?1; this value is maintained even after the 500th cycle, The excellent electrochemical performance is attributed to strong oxygen bridges between ZnO and graphene, where C–O–Zn linkages provide a good pathway for electron transport during charge/discharge cycles. Additionally, the hierarchical structure of the ZnO microballs suppresses stacking among the graphene layers, allowing the GAs to accelerate the transport of lithium ions. Furthermore, the GA framework enhances the electrical conductivity and buffer any volume expansion.  相似文献   

20.
Synthesis of Er-doped ZnO nanoparticle/organic hybrid from metal-organics   总被引:1,自引:0,他引:1  
An Er-doped ZnO nanoparticle/organic hybrid was synthesized in situ from zinc acrylate (ZA) and erbium acetate (EA) using methylhydrazine. Nano-sized Er-doped ZnO particles were formed in an organic matrix by hydrolysis and polymerization of ZA–EA at 80 °C. The crystallinity of the Er-doped ZnO particles in the hybrid was dependent upon the hydrolysis temperature and water amount. Analysis by transmission electron microscopy and energy dispersive X-ray analyzer revealed that crystalline ZnO nanoparticles doped with Er were dispersed in the organic matrix. The hybrid film sandwiched between fused silica plates was highly transparent. The Er-doped ZnO particle/organic hybrid showed a photoluminescence peak at 0.81 eV (1.54 μm) attributed to the transition of Er3+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号