共查询到20条相似文献,搜索用时 15 毫秒
1.
A hybrid system comprising a fuel cell stack and a battery bank was developed, built and tested in this research work. This hybrid system was built to supply both DC and AC outputs. The voltage levels set on electrical interconnection points are achieved with several power conditioning stages controlled by Pulse Width Modulation (PWM). The main advantage of this system is its excellence as a test bench, since it allows testing system performance at different voltage-restricted interconnecting points. Besides, power electronics are observed to play an essential role in distributed generation systems. The applications of the developed hybrid system extend from Auxiliary Power Units (APU) in vehicles (cars, buses or trains) to Uninterruptible Power Systems (UPS) in hospitals, nursing homes, hotels, office buildings or schools. 相似文献
2.
Solid oxide fuel cell (SOFC) is a promising technology for decentralized power generation and cogeneration. This technology has several advantages: the high electric efficiency, which can be theoretically improved through integration in power cycles; the low emissions; and the possibility of using a large variety of gaseous fuels. 相似文献
3.
S.J.C. Cleghorn X. Ren T.E. Springer M.S. Wilson C. Zawodzinski T.A. Zawodzinski S. Gottesfeld 《International Journal of Hydrogen Energy》1997,22(12):1137-1144
We describe recent activities at Los Alamos National Laboratory devoted to polymer electrolyte fuel cells in the contexts of stationary power generation and transportation applications. A low cost/high performance hydrogen or reformate/air stack technology is being developed based on ultra-low platinum loadings and non-machined, inexpensive elements for flow-fields and bipolar plates. On-board methanol reforming is compared to the option of direct methanol fuel cells in light of recent significant power density increases demonstrated in the latter. 相似文献
4.
K. Duraiswamy Anand Chellappa Gregory Smith Yi Liu Mingheng Li 《International Journal of Hydrogen Energy》2010
A collaborative effort between Intelligent Energy and Cal Poly Pomona has developed an adsorption enhanced reformer (AER) for hydrogen generation for use in conjunction with fuel cells in small sizes. The AER operates at a lower temperature (about 500 °C) and has a higher hydrogen yield and purity than those in the conventional steam reforming. It employs ceria supported rhodium as the catalyst and potassium-promoted hydrotalcites to remove carbon dioxide from the products. A novel pulsing feed concept is developed for the AER operation to allow a deeper conversion of the feedstock to hydrogen. Continuous production of near fuel-cell grade hydrogen is demonstrated in the AER with four packed beds running alternately. In the best case of methane reforming, the overall conversion to hydrogen is 92% while the carbon dioxide and carbon monoxide concentrations in the production stream are on the ppm level. The ratio of carbon dioxide in the regeneration exhaust to the one in the product stream is on the order of 103. 相似文献
5.
6.
7.
High-temperature fuel cells for power generation 总被引:1,自引:0,他引:1
Hybrid systems consisting of series-connected high-temperature solid-electrolyte fuel cells (HTSEFCs) thermally coupled to coal gasifiers show great potential for overall efficiencies of nearly 60% for the production of electricity from coal. This paper describes a steady-state model for the prediction of HTSEFC voltage, current and power density. The HTSEFC model is essentially a distributed parameter electrical network that includes the effects of mass transfer resistance (concentration polarization), chemical kinetic resistance (activation polarization), as well as all relevant electrical resistances (ohmic losses). This electrical network representation leads to a finite-difference discretization which, in effect, divides the fuel cell into many simple current-flow sections. Furthermore, the model computes the fuel and oxidant stream compositions as functions of axial length from energy and mass balances performed on each fuel cell slice. The model yields results that compare favorably with the published experimental data from Westinhouse. 相似文献
8.
The demand of electric energy is increasing globally, and the fact remains that the major share of this energy is still being produced from the traditional generation technologies. However, the recent trends, for obvious reasons of environmental concerns, are indicating a paradigm shift towards distributed generation (DG) incorporating renewable energy resources (RERs). But there are associated challenges with high penetration of RERs as these resources are unpredictable and stochastic in nature, and as a result, it becomes difficult to provide immediate response to demand variations. This is where energy storage systems (ESSs) come to the rescue, and they not only can compensate the stochastic nature and sudden deficiencies of RERs but can also enhance the grid stability, reliability, and efficiency by providing services in power quality, bridging power, and energy management. This paper provides an extensive review of different ESSs, which have been in use and also the ones that are currently in developing stage, describing their working principles and giving a comparative analysis of important features and technical as well as economic characteristics. The wide range of storage technologies, with each ESS being different in terms of the scale of power, response time, energy/power density, discharge duration, and cost coupled with the complex characteristics matrices, makes it difficult to select a particular ESS for a specific application. The comparative analysis presented in this paper helps in this regard and provides a clear picture of the suitability of ESSs for different power system applications, categorized appropriately. The paper also brings out the associated challenges and suggests the future research directions. 相似文献
9.
《Biomass & bioenergy》2006,30(5):469-485
Fuel-cycle emissions of carbon dioxide (CO2), carbon oxide (CO), nitrogen oxides (NOx), sulphur dioxide (SO2), hydrocarbons (HC), methane (CH4), and particles are analysed from a life-cycle perspective for different biogas systems based on six different raw materials. The gas is produced in large- or farm-scale biogas plants, and is used in boilers for heat production, in turbines for co-generation of heat and electricity, or as a transportation fuel in light- and heavy-duty vehicles. The analyses refer mainly to Swedish conditions. The levels of fuel-cycle emissions vary greatly among the biogas systems studied, and are significantly affected by the properties of the raw material digested, the energy efficiency of the biogas production, and the status of the end-use technology. For example, fuel-cycle emission may vary by a factor of 3–4, and for certain gases by up to a factor of 11, between two biogas systems that provide an equivalent energy service. Extensive handling of raw materials, e.g. ley cropping or collection of waste-products such as municipal organic waste, is often a significant source of emissions. Emission from the production phase of the biogas exceeds the end-use emissions for several biogas systems and for specific emissions. Uncontrolled losses of methane, e.g. leakages from stored digestates or from biogas upgrading, increase the fuel-cycle emissions of methane considerably. Thus, it is necessary to clearly specify the biogas production system and end-use technology being studied in order to be able to produce reliable and accurate data on fuel-cycle emission. 相似文献
10.
11.
The concept of intelligent electricity grids, which primarily involves the integration of new information and communication technologies with power transmission lines and distribution cables, is being actively explored in the European Union and the United States. Both developments share common technological developmental goals but also differ distinctly towards the role of distributed generation for their future electrical energy security. This paper looks at options that could find relevance to New Zealand (NZ), in the context of its aspiration of achieving 90% renewable energy electricity generation portfolio by 2025. It also identifies developments in technical standardization and industry investments that facilitate a pathway towards an intelligent or smart grid development for NZ. Some areas where policy can support research in NZ being a “fast adapter” to future grid development are also listed.This paper will help policy makers quickly review developments surrounding SmartGrid and also identify its potential to support NZ Energy Strategy in the electricity infrastructure. This paper will also help researchers and power system stakeholders for identifying international standardization, projects and potential partners in the area of future grid technologies. 相似文献
12.
This paper introduces the methods of integration of solar energy and low‐temperature solid oxide fuel cells. On the one hand, we design the system that integrates the solar photovoltaic cells and fuel cells. On the other hand, solar energy is concentrated to heat up the fuel cell and supply the working temperature at hundreds Celsius degrees by Fresnel lens. Then the fuel conversion efficiency is increased because of gain from the solar energy. Moreover, integration of solar thermal energy power system with the fuel is a good method for resolving the instability of solar energy. CHP (combined heat and power) is another aspect to enhance the design hybrid system overall efficiency. Finally, we present a novel device but built on different scientific principle. It can convert solar energy and chemical energy of fuel to electric energy simultaneously within the same device to integrated solar cell and fuel cell from the device level. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
14.
15.
An innovative control strategy is proposed of hybrid distributed generation (HDG) systems, including solid oxide fuel cell (SOFC) as the main energy source and battery energy storage as the auxiliary power source. The overall configuration of the HDG system is given, and dynamic models for the SOFC power plant, battery bank and its power electronic interfacing are briefly described, and controller design methodologies for the power conditioning units and fuel cell to control the power flow from the hybrid power plant to the utility grid are presented. To distribute the power between power sources, the fuzzy switching controller has been developed. Then, a Lyapunov based-neuro fuzzy algorithm is presented for designing the controllers of fuel cell power plant, DC/DC and DC/AC converters; to regulate the input fuel flow and meet a desirable output power demand. Simulation results are given to show the overall system performance including load-following and power management of the system. 相似文献
16.
An economic evaluation of a hybrid wind/photovoltaic/fuel cell (FC) generation system for a typical home in the Pacific Northwest is performed. In this configuration the combination of a FC stack, an electrolyser, and hydrogen storage tanks is used as the energy storage system. This system is compared to a traditional hybrid energy system with battery storage. A computer program has been developed to size system components in order to match the load of the site in the most cost effective way. A cost of electricity, an overall system cost, and a break-even distance analysis are also calculated for each configuration. The study was performed using a graphical user interface programmed in MATLAB. 相似文献
17.
18.
《International Journal of Hydrogen Energy》2007,32(10-11):1396-1403
The aim of this paper is to present a feasibility analysis of the application of fuel cells for a combined heat and power system with grid connection in the tertiary sector. Although the analysis considers Spanish data, the methodology proposed is developed to be applicable at the EU level.The current legislative framework is analysed in order to establish the suitability of the payment scheme considered for the sale of surplus electricity from these systems. The paper also establishes criteria for the optimal design of distributed generation systems based on fuel cells from a technical, economic and environmental point of view, presenting the strategies that should be implemented to promote the future implantation of these systems and their progressive introduction to the market. 相似文献
19.
It has become imperative for the power and energy engineers to look out for the renewable energy sources such as sun, wind, geothermal, ocean and biomass as sustainable, cost-effective and environment friendly alternatives for conventional energy sources. However, the non-availability of these renewable energy resources all the time throughout the year has led to research in the area of hybrid renewable energy systems. In the past few years, a lot of research has taken place in the design, optimization, operation and control of the renewable hybrid energy systems. It is indeed evident that this area is still emerging and vast in scope. The main aim of this paper is to review the research on the unit sizing, optimization, energy management and modeling of the hybrid renewable energy system components. Developments in research on modeling of hybrid energy resources (PV systems), backup energy systems (Fuel Cell, Battery, Ultra-capacitor, Diesel Generator), power conditioning units (MPPT converters, Buck/Boost converters, Battery chargers) and techniques for energy flow management have been discussed in detail. In this paper, an attempt has been made to present a comprehensive review of the research in this area in the past one decade. 相似文献