首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Two process methods, mechanical alloying and vacuum arc melting, were used to prepare Ti0.37V0.38Mn0.25 alloy powders for studying their differences in hydrogen storage capacities. Ti0.37V0.38Mn0.25 samples produced by mechanical alloying showed an amorphous structure and a maximum hydrogen absorption of 1.76 wt%, but those prepared by vacuum arc melting exhibited a single phase BCC structure with no Laves phase, as well as a maximum hydrogen absorption of 3.62 wt%. The hydride in Ti0.37V0.38Mn0.25 alloy after hydrogen absorption was VH2, whose low reaction temperature allows for large amount of hydrogen absorption at ambient temperature. The hydride was, however, unstable and decomposed completely at relatively low hydrogen desorption temperature of 200 °C. After absorption–desorption cycling for 100 times, the mechanically alloyed powders, which did not pulverize as much as those of the arc-melting derived powders, showed smaller decline in hydrogen-absorption capability.  相似文献   

2.
In this paper, we present the synthesis, first hydrogenation kinetics, thermodynamics and effect of cycling on the hydrogen storage properties of a V0.3Ti0.3Cr0.25Mn0.1Nb0.05 high entropy alloy. It was found that the V0.3Ti0.3Cr0.25Mn0.1Nb0.05 alloy crystallizes in body-centred cubic (BCC) phase with a small amount of secondary phase. The first hydrogenation is possible at room temperature without incubation time and reaches a maximum hydrogen storage capacity of 3.45 wt%. The pressure composition isotherm (P–C–I) at 298 K shows a reversible hydrogen desorption capacity of 1.78 wt% and a desorption plateau pressure of 80.2 kPa. The capacity loss is mainly due to the stable hydride with the desorption enthalpy of 31.1 kJ/mol and entropy of 101.8 J/K/mol. The hydrogen absorption capacity decreases with cycling due to incomplete desorption at room temperature. The hydrogen absorption kinetics increases with cycling and the rate-limiting step is diffusion-controlled for hydrogen absorption.  相似文献   

3.
The composite alloy of Ti0.32Cr0.43V0.25 with x wt% La (where x = 0–10) was prepared by arc melting technique. The effect on hydrogen storage capacity, flatness of the plateau pressure, and residual hydrogen was investigated in La added Ti0.32Cr0.43V0.25. Crystalline phase and microstructure of the prepared composite alloy were investigated and characterized by XRD, SEM and TEM. The crystal structure was refinement using Rietveld analysis. The effective hydrogen storage capacity of the composite alloy was found comparable to the parent alloy, when 5 wt% La was added. The effective hydrogen capacity (∼2.31 wt%) was close to that of the parent alloy (2.35 wt%) and the plateau slope was significantly improved from 30.5 of the parent alloy to 14.6. Appropriate mechanisms associated with the improved flatness by the La addition has been discussed in terms of the refined crystalline structure. Using TG/DTA method we have shown the differences in the interaction of residual hydrogen with the BCC phase of both parent alloy and 5 wt % La mixed alloy.  相似文献   

4.
AB2-type Ti-based alloys with Laves phase have advantages over other kinds of hydrogen storage intermetallics in terms of hydrogen sorption kinetics, capacity, and reversibility. In this work, Ti–Zr–Cr-based alloys with progressive Mn, Ni, and V substitutions are developed for reversible hydrogen storage under ambient conditions (1–40 atm, 273–333 K). The optimized alloy (Ti0.8Zr0.2)1.1Mn1.2Cr0.55Ni0.2V0.05 delivers a hydrogen storage capacity of 1.82 wt%, the hydrogenation pressure of 10.88 atm, and hydrogen dissociation pressure of 4.31 atm at 298 K. In addition, fast hydrogen sorption kinetics and low hydriding-dehydriding plateau slope render this alloy suitable for use in hybrid hydrogen tank of fuel cell bicycles.  相似文献   

5.
The effect of the addition of 4th element on the hydrogen storage capacity of Ti0.32Cr0.43V0.25 alloy was evaluated by simulation and confirmed experimentally. The crystal lattice volume, phase formation energy, and hydrogen absorption energy of the alloys were calculated by ab initio calculation for the alloys containing the third-period transition metals as Sc, Cr, Mn, Fe, Co, Ni, Cu, and Zn. It was postulated that the hydrogen absorption would be favored by large crystal volume and low hydrogen absorption energy. The calculation suggested Sc as the most suitable element and the hydrogen capacities of a series of Ti0.32Cr0.43−xV0.25Scx alloys (x = 0.02–0.1) were determined accordingly. Among the alloys, the capacities of Ti0.32Cr0.41V0.25Sc0.02 and Ti0.32Cr0.39V0.25Sc0.04 alloys were higher than that of the Ti0.32Cr0.43V0.25 alloy. The capacity of both alloys could be enhanced further by the heat treatment at 1250 °C due to the elimination of the second-phase TiCr2.  相似文献   

6.
《Journal of power sources》2003,113(1):151-156
The hydrogen absorption characteristics and the electrochemical behavior of the Zr0.9Ti0.1Mn0.66V0.46Ni1.1 alloy were studied. The pressure–composition isotherms for the alloy show a high hydrogen storage capacity and a steep slope with a slight plateau instead of the horizontal plateau corresponding to the two-phase equilibrium. This feature is attributed to the presence of small amounts of secondary phases due to microsegregation of alloying elements during solidification. The plateau tendency is enhanced upon homogenization annealing of the alloy. The activation of the Zr0.9Ti0.1Mn0.66V0.46Ni1.1 alloy electrode in alkaline solution at 30 °C was evaluated by using the cyclic voltammetry technique. For comparison, the Zr0.9Ti0.1CrNi alloy was also studied. The discharge capacities are about 330 mAh/g for both as-melted alloys, but the activation is faster for Zr0.9Ti0.1Mn0.66V0.46Ni1.1 than for Zr0.9Ti0.1CrNi, indicating that the substitution of Cr by Mn and V enhances the rate of activation due to the formation of metal surface oxides that can be reduced more easily, which increases the reaction surface area. For the annealed Zr0.9Ti0.1Mn0.66V0.46Ni1.1 alloy, large charge–discharge overpotentials and a significant decrease in discharge capacity are observed, which is ascribed to the disappearance of catalytic secondary phases present in the as-melted alloy.  相似文献   

7.
This study examines the effects of the addition of Mn and LmNi4.1Al0.25Mn0.3Co0.65 (Lm: lanthanum-rich mischmetal) alloy on the electrochemical characteristics of body centered cubic (BCC) type Ti0.32Cr0.43−xMnxV0.25 (x = 0–0.08) alloys as negative electrode (anode) materials for nickel–metal-hydride (Ni-MH) batteries. The activation behaviour and discharge capacity of the BCC alloys are improved significantly by ball-milling with LmNi4.1Al0.25Mn0.3Co0.65 alloy because this AB5 alloy acts as a path for hydrogen on the surface of the BCC alloy. Among the Mn-substituted alloys, a Ti0.32Cr0.38Mn0.05V0.25 alloy ball-milled with the AB5 alloy yields the greatest discharge capacity of 340 mAh g−1. In addition, compared with the alloy without Mn, the Mn-substituted alloys exhibit a lower plateau pressure for hydrogen, a better hydrogen-storage capacity in the pressure–composition isotherms and faster surface activation.  相似文献   

8.
To reduce the cost and modulate hydrogen storage performances of Ti-based Laves phase alloys for the application of inputting 3.2 MPa feed hydrogen and outputting 8 MPa hydrogen with water bath, three series of less-vanadium Ti–Zr–Mn–Cr–V based alloys were prepared by induction levitation melting, and their microstructure and hydrogen storage properties were systematically investigated. All alloys consist of a single C14-type Laves phase with well-distributed elements. With vanadium decreasing in Ti0.95Zr0.05Mn0.9+xCr0.9+xV0.2-2x (x = 0–0.02) and Ti0.93Zr0.07Mn1.1+yCr0.7+zV0.2-y-z (y = 0, 0.05, z = 0–0.05) stoichiometric alloys, the hydrogen equilibrium pressure increases and hydrogenation kinetics is slightly deteriorated. After introducing Ti hyper-stoichiometry, Ti0.93+wZr0.07Mn1.15Cr0.7V0.15 (w = 0–0.04) alloys show decreased hydrogen equilibrium pressure, high hydrogen capacity and enhanced kinetics. Among alloys mentioned, Ti0.95Zr0.07Mn1.15Cr0.7V0.15 has optimum performances including useable capacity of 1.07 wt% at working conditions, together with satisfactory cycling durability. This study guides for compositional design of high-density hydrogen storage multi-component alloys.  相似文献   

9.
TixCr1 ? yFeyMn1.0 (x = 1.02, 1.05, 1.1, 0.05 ≤ y ≤ 0.25) alloys were prepared by plasma arc melting and annealing at 1273 K for 2 hours. The XRD results show that the main phase of all alloys is the C14 type Laves phase, and a little secondary phase exists in a mixture of the binary alloy phase. The lattice parameters increase with Ti super‐stoichiometry ratio increasing, whereas smaller lattice parameters emerge with increasing Fe stoichiometry content. Additionally, as the Ti super‐stoichiometry ratio decreases, the pressure‐composition‐temperature measurements indicated that hydrogen absorption and desorption plateau pressures of TixCr0.9Fe0.1Mn1.0 (x = 1.1, 1.05, 1.02) alloys increase from 3.15, 0.67, to 5.94, 1.13 MPa at 233 K, respectively. On the other hand, with the Fe content increasing in Ti1.05Cr1 ? yFeyMn1.0 (0.1 ≤ y ≤ 0.25) alloys from 0.1 to 0.25, the hydrogen desorption plateau pressures increased from 1.41 to 2.46 MPa at 243 K. The hydrogen desorption plateau slopes reduce to 0.2 with Ti super‐stoichiometry ratio decreasing to 1.02, but the alloys are very difficult to activate for hydrogen absorption and cannot activate when the Fe substituting for Cr exceeds 0.2. The maximum hydrogen storage capacities were more than 1.85 wt% at 201 K. The reversible hydrogen storage capacities can remain more than 1.55 wt% at 271 K. The enthalpy and entropy for all hydride dehydrogenation are in the range of 21.0 to 25.5 kJ/mol H2 and 116 to 122 J mol?1 K?1, respectively. Our results suggest that Ti1.05Cr0.75Fe0.25Mn1.0 alloy with low enthalpy holds great promise for a high hydrogen pressure hybrid tank in a hydrogen refueling station (45 MPa at 333 K), and the other alloys of low cost may be used for a potable hybrid tank due to high dissociation pressure at 243 K and high volumetric density exceeding 40 kg/m3.  相似文献   

10.
The paper describes the self-ignition combustion synthesis (SICS) of the hydrogen storage alloy TiFe1?xMnx (X = 0, 0.1, 0.2, 0.3, and 0.5) in a hydrogen atmosphere, where the hydrogenation properties of the products are mainly examined. In the experiments, the well-mixed powders of Ti, Fe, and Mn in the molar ratio of 1:1-X:X were uniformly heated up to 1473 K, and then were cooled naturally in pressurized hydrogen at 0.9 MPa. All products were successfully synthesized by utilizing the exothermic reaction, which occurred at around 1358 K. The XRD analysis showed that SICS generated TiFe1?xMnx in the range of X value from 0 to 0.3. All SICSed products absorbed hydrogen smoothly at 298 K at an initial pressure of 4.1 MPa. Most significantly, TiFe0.8Mn0.2 improved the dual plateau property. The results revealed that SICS was quite effective for producing the hydrogen storage alloy TiFe1?xMnx.  相似文献   

11.
To save compressor investment and promote operation efficiency of hydrogen refueling station, the hydrogen storage alloys for high-pressure hydrogen metal hydride tank is developed. Ti1.02Cr2-x-yFexMny (0.6 ≤ x ≤ 0.75, y = 0.25, 0.3) alloys with main structure of C14 type Laves phase and low dehydrogenation enthalpy were prepared by plasma arc melting and heat treatment. Pressure-composition-temperature measurements show that hydrogen desorption plateau pressures increase with Cr substituted by Fe increasing. The maximum and reversible hydrogen storage capacities are more than 1.85 and 1.65 wt% at 201 K respectively. The hydrogen desorption plateau slopes are all less than 0.5. The symmetry weakening of 2a sites may deteriorate the plateau slop characteristic. Ti1.02Cr0.95Fe0.75Mn0.3 and Ti1.02Cr1.0Fe0.75Mn0.25 alloys are suitable for high pressure hybrid tank which can supply the effective hydrogen (more than 70 MPa) about 40.0, 44.2, 46.9 kg/m3 with 45, 70, 90 MPa compressor, respectively.  相似文献   

12.
Three series of Ti–Cr–Mn–Fe based alloys with high hydrogen desorption plateau pressures for hybrid hydrogen storage vessel application were prepared by induction levitation melting, as well as their crystallographic characteristics and hydrogen storage properties were investigated. The results show that all of the alloys were determined as a single phase of C14-type Laves structure. As the Fe content in the TiCr1.9−xMn0.1Fex (x = 0.4–0.6) alloys increases, the hydrogen absorption and desorption plateau pressures increase, and the hydrogen storage capacity and plateau slope factor decrease respectively. The same trends are observed when increasing the Mn content in the TiCr1.4−yMnyFe0.6 (y = 0.1–0.3) alloys, except for the plateau slope factor. Compared with the stoichiometric TiCr1.1Mn0.3Fe0.6 alloy, the titanium super-stoichiometric Ti1+zCr1.1Mn0.3Fe0.6 (z = 0.02, 0.04) alloys have larger hydrogen storage capacities and lower hydrogen desorption plateau pressures. Among the studied alloys, Ti1.02Cr1.1Mn0.3Fe0.6 has the best overall properties for hybrid hydrogen storage application. Its hydrogen desorption pressure at 318 K is 41.28 MPa, its hydrogen storage capacity is 1.78 wt.% and its dissociation enthalpy (ΔHd) is 16.24 kJ/mol H2.  相似文献   

13.
Substituting Al for part of Cr in Ti0.32Cr0.43V0.25 alloy caused BCC lattice parameter and crystallite size to increase and lattice strain to decrease. These microstructual changes caused the decrease in the hydrogen storage capacity and the increase in both the plateau pressure and the hysteresis. The results were contradictory to the general observation that the plateau pressure decreases with the increase in the lattice parameter. The fact that the bond structure between H and Al and that between H and the transition metals differ can account for this discrepancy. This difference also resulted in the decrease in the hydrogen storage capacity. The increased hysteresis resulting from the increase in the Al content can be ascribed to the increased crystallite size and the decreased lattice strain.  相似文献   

14.
Vanadium-based body-centered-cubic (BCC) alloys are ideal hydrogen storage media because of their high reversible hydrogen capacities at moderate conditions. However, the rapid capacity decay in hydrogen ab-/desorption cycles prevents their practical application. In this work, V-based BCC alloys with three different V contents (V20Ti38Cr41.4Fe0.6, V40Ti28.5Cr30.1Fe1.4, V60Ti19Cr19Fe2, named as V20, V40, V60) were prepared by arc melting, and their microstructures and hydrogen ab-/desorption properties were investigated systematically. XRD results show that there is a number of C15-Laves phase presence in V20, which does not appear in V40 and V60. Meanwhile, the lattice constant of the BCC phase clearly decreases as the V content rises. These differences result in a hydrogen storage capacity of only 1.82 wt% for V20 alloy, but 2.13 wt% for V40 and 2.14 wt% for V60, and an increment in hydrogen ab-/desorption plateau pressure. The V40 and V60 alloys are chosen in de-/hydrogenation cycle test owing to higher effective storage capacities, and the results show that the V60 alloy has better cycle durability. According to the microstructural analysis of the two alloys during the cycles, the micro-strain accumulates, the cell volume expands, the particles pulverizes and the defects increase during the cycles, which eventually lead to the attenuation of the hydrogen storage capacity. The increment of the V content obviously improves the elastic properties of the alloy, which further diminishes the micro-strain accumulation, cell volume expansion, particle pulverization and defect increase, eventually resulting in a higher capacity retention and better cyclic durability.  相似文献   

15.
To improve absorption/desoprtion rate and hydrogen desorption capacity of Ti–V–Mn alloy, Ti23V40Mn37 alloys by Hf and Hf/Cr substitutions were prepared, the activation and hydriding/dehydriding behaviors of the alloys are investigated. Results show that the lattice parameter of BCC phase increases and the ratio of C14 Laves phase also increases by the substitutions. Ti19Hf4V40Mn35Cr2 alloy exhibits the rapid absorption/desoprtion rate and the highest hydrogen desorption capacity of 1.58 wt% H2 at 293 K. The Hydrogenation kinetic mechanism of the alloys is transformed from nucleation-growth to diffusion, and the dehydrogenation kinetic mechanism is only nucleation-growth. The activation energy of Hf/Cr substituted alloy is lower than that of Hf-free alloy, with the values of 53.79 kJ mol−1 H2 and 90.13 kJ mol−1 H2 respectively, which is accounted for the easily absorption of hydrogen molecules on the particle surface and the rapid H diffusion of the interior of alloy, thus the substituted alloys have rapid absorption/desoprtion rate.  相似文献   

16.
Ti0.85Zr0.17Cr1.2-xFe0.8Vx (x = 0–0.2), Ti0.85Zr0.17Cr1.2-yFe0.7+yV0.1 (y = 0–0.25) and Ti0.87-zZr0.15+zCr0.95Fe0.95V0.1 (z = 0–0.04) alloys for metal hydride hydrogen compressor at moderate working temperatures were prepared by induction levitation melting. Their microstructures and hydrogen storage properties were systematically investigated. The results show that all Ti–Zr–Cr–Fe–V based alloys have a single C14 Laves phase structure. As the V content in the Ti0.85Zr0.17Cr1.2-xFe0.8Vx (x = 0–0.2) alloys increases, better activation kinetics and larger hydrogen storage capacity are achieved, while the plateau pressure decreases and the plateau slope factor increases. Similarly, the hydrogen storage capacity, the plateau pressure and the plateau slope factor of the Ti0.87-zZr0.15+zCr0.95Fe0.95V0.1 (z = 0–0.04) alloys vary identically with Zr content increasing. Conversely, these three properties vary oppositely with increasing Fe content in the Ti0.85Zr0.17Cr1.2-yFe0.7+yV0.1 (y = 0–0.25) alloys. Among the studied alloys, Ti0.85Zr0.17Cr0.95Fe0.95V0.1 possesses the best overall properties for the designed moderate hydrogen compression application.  相似文献   

17.
In this work, the crystal structure and hydrogen storage properties of V35Ti30Cr25Fe10, V35Ti30Cr25Mn10, V30Ti30Cr25Fe10Nb5 and V35Ti30Cr25Fe5Mn5 BCC-type high entropy alloys have been investigated. It was found that high entropy promotes the formation of BCC phase while large atomic difference (δ) has the opposite effect. Among the four alloys, the V35Ti30Cr25Mn10 alloy shows the highest hydrogen absorption capacity while the V35Ti30Cr26Fe5Mn5 alloy exhibits the highest reversible capacity. The cause of the loss of desorption capacity is mainly due to the high stability of the hydrides. The higher room-temperature desorption capacity of the V35Ti30Cr25Fe5Mn5 alloy is due to higher hydrogen desorption pressure. After pumping at 400 °C, the hydrides can return to the original BCC structure with only a small expansion in the cell volume.  相似文献   

18.
《Journal of power sources》2001,92(1-2):250-254
The electrochemical characteristics of the La0.8Ce0.2Ni2.5Co1.8Mn0.4Al0.3 compound, produced by mechanical alloying, are investigated for hydrogen storage in nickel-metal hydride (NiMH) batteries by discharging tests at constant current and by calculating equilibrium pressure of hydrogen from the equilibrium potentials. It is shown that the alloy produced by mechanical alloying, followed by annealing and activation exhibits high specific capacity at the stable potential plateau, even at the high discharge rate (10 mA cm−2), and low hydrogen equilibrium pressure. The alloy of such composition gives low capacity loss during cycling, which enables its application for metal hydride battery production.  相似文献   

19.
Hydrogen storage and cyclic properties of V60Ti(21.4+x)Cr(6.6−x)Fe12 (0 ≤ x ≤ 3) alloys were investigated systematically. All alloys were composed of single BCC phase and exhibited good activation performance. V60Ti22.4Cr5.6Fe12 showed the highest desorption capacity of 2.12 wt% with the plateau pressure of 0.061 MPa. In the absorption–desorption cycle tests, both the hydrogen desorption capacity and the micro-strain of V60Ti22.4Cr5.6Fe12 alloy showed exponential relationship with the increase of cycle numbers, which indicated that the micro-strain induced and thereafter accumulated during the absorption–desorption cycles might lead to the decrease of the desorption capacity.  相似文献   

20.
The influence of Fe content on the microstructure and hydrogen storage properties of Ti16Zr5Cr22V57−xFex (x = 2–8) alloys was investigated systematically. The results show that all alloys consist of a BCC main phase and a small amount of C14 Laves secondary phase. The crystal lattice parameters of the BCC main phase in the alloys decrease with the increase of the Fe content. Under moderate conditions, all the alloys have good activation behaviors and hydriding/dehydriding kinetics. As the x increases, the hydrogen desorption plateau pressure of the alloys increases consequently. Among the studied alloys, Ti16Zr5Cr22V55Fe2 alloy has suitable hydrogen desorption plateau pressures indicated by the middle value of pressure range. (0.1–1 MPa) at 298 K and the best overall hydrogen storage properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号