首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lead telluride was used as a “captive” source of tellurium (Te) for the n-type doping of gallium antimonide (GaSb) and aluminum antimonide (AlSb)grown by molecular beam epitaxy. Controllable carrier concentrations from 1.2 x 1016 to 1.6 x 1018 cm-3 were obtained. High room-temperature Hall mobilities of 4200 cm2/V · s were measured for the low-doped GaSb samples. In the growth temperature range of interest, doping ef-ficiencies are approximately 50% of those in GaAs. For GaSb, SIMS data show that the Te incorporation decreases significantly at growth temperatures above 500° C. How-ever, in AlSb, there is no significant reduction in the incorporation of Te up to at least 650° C. In contrast, the Te incorporation into AlSb decreases at low temperatures. There is also some evidence of surface segregation in AlSb. Contrary to other doping studies, increasing the Sb : Ga flux ratio was found to reduce the Te incorporation.  相似文献   

2.
Highly conducting transparent indium-doped zinc oxide (IZO) thin films have been achieved by controlling different growth parameters using radio frequency magnetron sputtering. The structural, electrical, and optical properties of the IZO thin films have been investigated for varied indium content and growth temperature (T G) in order to find out the optimum level of doping to achieve the highest conducting transparent IZO thin films. The highest mobility and carrier concentration of 11.5 cm2/V-s and 3.26 × 1020 cm?3, respectively, have been achieved in IZO doped with 2% indium. It has been shown that as T G of the 2% IZO thin films increase, more and more indium atoms are substituted into Zn sites leading to shift in (002) peaks towards higher angles which correspond to releasing the stress within the IZO thin film. The minimum resistivity of 5.3 × 10?4 Ω-cm has been achieved in 2% indium-doped IZO grown at 700°C.  相似文献   

3.
Selenium doped Ga0.51In0.49P films have been grown by metalorganic chemical vapour deposition at 600, 670 and 740° C. The extent of ordering of the Group III sublattice has been monitored by transmission electron microscopy. Ordering disappears at carrier concentrations on the order of 1018 cm−3 for samples grown at 600 and 740° C although a small degree of ordering persists in the samples grown at 670° C up to a carrier concentration of 1019 cm−3. At each growth temperature, the ordering observed decreased and the bandgap measured increased with increasing Se doping.  相似文献   

4.
Iodine doping of CdTe layers grown on (100) GaAs by metal-organic vapor phase epitaxy (MOVPE) was studied using diethyltelluride (DETe) and diisopropyltelluride (DiPTe) as tellurium precursors and ethyliodine (EI) as a dopant. Electron densities of doped layers increased gradually with decreasing the growth temperature from 425°C to 325°C. Doped layers grown with DETe had higher electron densities than those grown with DiPTe. When the hot-wall temperature was increased from 200°C to 250°C at the growth temperature of 325°C, doped layers grown with DETe showed an increase of the electron density from 3.7×1016 cm−3 to 2.6×1018 cm−3. On the other hand, such an increase of the electron density was not observed for layers grown with DiPTe. The mechanisms for different doping properties for DETe and DiPTe were studied on the basis of the growth characteristics for these precursors. Higher thermal stability of DETe than that of DiPTe was considered to cause the difference of doping properties. With increasing the hot-wall temperature from 200°C to 250°C, the effective ratio of Cd to Te species on the growth surface became larger for layers grown with DETe than those grown with DiPTe. This was considered to decrease the compensation of doped iodine and to increase the electron density of layers grown with DETe. The effective ratio of Cd to Te species on the growth surface also increased with decreasing growth temperature. This was considered to increase the electron density with decreasing growth temperature.  相似文献   

5.
We report on the electrical properties of ZnO films and devices grown on different substrates by radio-frequency magnetron sputtering. The films grown on c-plane sapphire were annealed in the range 800–1,000°C. The electron concentration increased with annealing temperature reaching 1.4×1019 cm?3 for 1,000°C. Mobility also increased, however, reaching its maximum value 64.4 cm2/V · sec for 950°C anneal. High-performance Schottky diodes were fabricated on ZnO films grown on n-type 6H-SiC by depositing Au/Ni(300/300 Å). After annealing at 900°C, the leakage current (at ?5 V reverse bias) decreased from 2.2 × 10?7 A to ~5.0 × 10?8 A after annealing at 900°C, the forward current increased by a factor of 2, and the ideality factor decreased from 1.5 to 1.03. The ZnO films were also grown on p-type 6H-SiC, and n-ZnO/p-SiC heterostructure diodes were fabricated. The p-n diode performance increased dramatically after annealing at 950°C. The leakage current decreased from 2.0×10?4 A to 3.0×10?7 A at ?10 V reverse bias, and the forward current increased slightly from 2.7 mA to 3.9 mA at 7 V forward bias; the ideality factor of the annealed diode was estimated as 2.2, while that for the as-grown sample was considerably higher.  相似文献   

6.
Highly transparent and conducting undoped zinc oxide films have been obtained with a best resistivity of ~1.1 × 10-3 Ω cm, a carrier density of ~1.5 × 1020 cm?3 and a mobility of ~38 cm2V?1s ?1. These were produced by activated reactive evaporation at a deposition rate of 2 to 8Å/s with a substrate temperature ≤200° C. The films deposited by this process were found to have resistivities that were thickness independent and also were relatively insensitive to deposition parameters. In terms of conductivity, it was found that films deposited at higher temperatures (T > 300°+ C) were always inferior to the films deposited below 200° C. High temperature vacuum annealing (350° C) significantly degraded the resistivity of the undoped films deposited at low temperature; this was attributable to a drop in both the electron concentration and the mobility. Aluminum doping was found to be able to stabilize the electron concentration while the drop in mobility was found to be related to the choice of substrate.  相似文献   

7.
This paper describes the Si-doping of GaAs that was grown using the AsCl3:H2:GaAs, Ga Chemical vapor deposition process. The doping sources were AsCl3:SiCl4 liquid solutions which proved to be highly reproducible for Si doping within the range, 1×1O16 to 2×1019 cm?3. Incorporation of Si into the GaAs apparently occurs under near equilibrium conditions. This point is considered in detail and the consequences experimentally utilized to grow n, n+ bilayers using a single AsCl3:SiCl4 doping solution. Si impurity profiles based upon differential capacitance and SIMS data are presented. These can be very abrupt for n, n+ structures with order of magnitude changes occurring within 500 Å. For the 1×1016 to 8×l018 cm?3 doped samples the mobilities at 78 and 298°K are comparable to the higher values reported for GaAs thin films grown by CVD. Power FET devices made from this material have demonstrated an output density of 0.86 watts/mm at 10 GHz.  相似文献   

8.
Parasitic absorption in transparent electrodes is one of the main roadblocks to enabling power conversion efficiencies (PCEs) for perovskite‐based tandem solar cells beyond 30%. To reduce such losses and maximize light coupling, the broadband transparency of such electrodes should be improved, especially at the front of the device. Here, the excellent properties of Zr‐doped indium oxide (IZRO) transparent electrodes for such applications, with improved near‐infrared (NIR) response, compared to conventional tin‐doped indium oxide (ITO) electrodes, are shown. Optimized IZRO films feature a very high electron mobility (up to ≈77 cm2 V?1 s?1), enabling highly infrared transparent films with a very low sheet resistance (≈18 Ω □?1 for annealed 100 nm films). For devices, this translates in a parasitic absorption of only ≈5% for IZRO within the solar spectrum (250–2500 nm range), to be compared with ≈10% for commercial ITO. Fundamentally, it is found that the high conductivity of annealed IZRO films is directly linked to promoted crystallinity of the indium oxide (In2O3) films due to Zr‐doping. Overall, on a four‐terminal perovskite/silicon tandem device level, an absolute 3.5 mA cm?2 short‐circuit current improvement in silicon bottom cells is obtained by replacing commercial ITO electrodes with IZRO, resulting in improving the PCE from 23.3% to 26.2%.  相似文献   

9.
Defect microstructure in terms of defect density and impurity concentration of epitaxial Si films grown by low temperature Remote Plasma-enchanced Chemical Vapor Deposition (RPCVD) in the temperature range of 150–305° C has been investigated using Transmission Electron Microscopy (TEM), Secondary Ion Mass Spectroscopy (SIMS), Reflection High Energy Electron Diffraction (RHEED) and defect etching/Nomarski microscopy. Defect density in the epitaxial Si films is found to be a strong function of growth temperature in the temperature range under study, indicating that thermal excitation is an important source of energy, in addition to plasma excitation, for driving surface reactions in the RPCVD expitaxial process. Impurity concentrations of H, O and C in the epitaxial films have been determined by SIMS analysis. The trace amounts (∼1 ppm) of oxygen and water vapor in the reactant gas (2%SiH4/He) was identified to be an important source of oxygen in the epitaxial Si films. An oxygen concentration as low as 3 × 1018 cm-3 in the epitaxial Si film grown at 150° C has been achieved through the use of a gas purifier. The higher hydrogen concentration in the films grown at lower temperatures is believed to be due to insufficiently rapid hydrogen desorption from the surface during growth. The results of characterization using TEM and SIMS are discussed to elucidate the atomistic mechanisms of Si epitaxial growth by RPCVD.  相似文献   

10.
The characteristics of the injection of electrons into a semiconductor from a microprobe–micrograin nanogap are investigated with a tunneling microscope in the mode of field emission into locally selected surface microcrystals of indium antimonide, indium arsenide, and gallium arsenide. The current mechanisms are established and their parameters are determined by comparing the experimental IV characteristics and those calculated from formulas of current transport. The effect of limitation of the current into the micrograins of indium antimonide and indium arsenide which manifests itself at injection levels exceeding a certain critical value, e.g., 6 × 1016 cm–3 for indium antimonide and 4 × 1017 cm–3 for indium arsenide, is discovered. A physical model, i.e., the localization of electrons in the surface area of a micrograin due to their Coulomb interaction, is proposed.  相似文献   

11.
N-type ZnSe with electron concentration up to 3 × 1020 cm−3 and low resistivity down to 1 × 10−4 ohm-cm, has been grown using a selective doping technique with chlorine during molecular beam epitaxy. The photoluminescence evaluation shows that the selectively doped ZnSe layers are superior to uniformly doped ones, especially for the case of high-concentration chlorine doping. The in-depth profile of chlorine concentration in a selectively doped sample was measured with secondary-ion mass spectroscopy (SIMS). The SIMS analysis shows only slight diffusion of the incorporated chlorine atoms even in highly doped samples.  相似文献   

12.
The thermoelectric power of electronic indium antimonide with n = 2 × 1014 cm?3 in a transverse magnetic field as high as 7 kOe is studied in the temperature range from 4.8 to 120 K. The thermoelectric power is found to be independent of field at a temperature close to 56 K.  相似文献   

13.
Electron traps in GaAs grown by MBE at temperatures of 200–300°C (LT-GaAs) were studied. Capacitance deep level transient spectroscopy (DLTS) was used to study the Schottky barrier on n-GaAs, whose space-charge region contained a built-in LT-GaAs layer ∼0.1 μm thick. The size of arsenic clusters formed in LT-GaAs on annealing at 580°C depended on the growth temperature. Two new types of electron traps were found in LT-GaAs layers grown at 200°C and containing As clusters 6–8 nm in diameter. The activation energy of thermal electron emission from these traps was 0.47 and 0.59 eV, and their concentration was ∼1017 cm−3, which is comparable with the concentration of As clusters determined by transmission electron microscopy. In LT-GaAs samples that were grown at 300°C and contained no arsenic clusters, the activation energy of traps was 0.61 eV. The interrelation between these electron levels and the system of As clusters and point defects in LT-GaAs is discussed. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 38, No. 4, 2004, pp. 401–406. Original Russian Text Copyright ? 2004 by Brunkov, Gutkin, Moiseenko, Musikhin, Chaldyshev, Cherkashin, Konnikov, Preobrazhenskii, Putyato, Semyagin.  相似文献   

14.
We report on the intentional ρ-type doping of GaAs layers grown in an UHV system from molecular beams of arsine (AsH3) and mixtures of frimethyl gallium (TMG) and friethyl gallium (TEG). The entire doping range between 1014 cm-3 (growth from pure TEG) and 1020 cm-3 (growth from pure TMG) can be covered by using mixtures of TMG and TEG. As revealed by SIMS and photoluminescence (PL) carbon is the dominant acceptor in the layers. Comparison of the Hall mobility and of the PL spectra shows that the quality of our films equals that of the best LPE and MBE grown ρ-type GaAs layers.  相似文献   

15.
Undoped mid-wave infrared Hg1?xCdxSe epitaxial layers have been grown to a nominal thickness of 8–14 μm on GaSb (211)B substrates by molecular beam epitaxy (MBE) using constant beam equivalent pressure ratios. The effects of growth temperature from 70°C to 120°C on epilayer quality and its electronic parameters has been examined using x-ray diffraction (XRD) rocking curves, atomic force microscopy, Nomarski optical imaging, photoconductive decay measurements, and variable magnetic field Hall effect analysis. For samples grown at 70°C, the measured values of XRD rocking curve full width at half maximum (FWHM) (116 arcsec), root mean square (RMS) surface roughness (2.7 nm), electron mobility (6.6?×?104 cm2 V?1 s?1 at 130 K), minority carrier lifetime (~?2 μs at 130 K), and background n-type doping (~?3?×?1016 cm?3 at 130 K), indicate device-grade material quality that is significantly superior to that previously published in the open literature. All of these parameters were found to degrade monotonically with increasing growth temperature, although a reasonably wide growth window exists from 70°C to 90°C, within which good quality HgCdSe can be grown via MBE.  相似文献   

16.
In0.5Al0.5P lattice-matched to GaAs and In0.5A10.5As lattice-matched to InP epilayers were grown by atmospheric pressure metalorganic chemical vapor deposition (AP-MOCVD). The effect of trimethylindium on the purity of the as-grown layers was systematically studied using secondary ion mass spectroscopy (SIMS), deep level transient spectroscopy (DLTS), and capacitance-voltage (C-V) measurements. The SIMS results showed that oxygen is the main impurity in all layers and the oxygen concentration in InAlP was approximately one to four orders of magnitude higher than the oxygen concentration found in InALAs when the same indium source was used, indicating that more oxygen was introduced by the phosphine source than by the arsine source. Two electron traps in the InAlP epilayers and four electron traps in the InALAs epilayers were observed in this study. When a high-purity indium source was used, the best InAlP epilayer showed only one deep electron trap at 0.50 eV while the best InALAs epilayer showed no deep levels measured by DLTS. In addition, we also found that a high concentration of oxygen is related to the high resistivity in both material systems; this suggests that semi-insulating (SI) materials can be achieved by oxygen doping and high quality conducting materials can only be obtained through the reduction of oxygen. The oxygen concentration measured by SIMS in the best InALAs epilayer was as low as 3 × 1017 cm−3.  相似文献   

17.
Using SIMS analysis, we have measured oxygen and carbon concentrations in epitaxial Si films grown between 550 and 900° C. The films were grown by rapid thermal chemical vapor deposition from SiH4 as well as several different SiH2Cl2 sources. We have found that at low deposition temperatures (∼750° C or lower), oxygen incorporation is first dictated by source gas impurities and then by residual chamber gases. For the case of SiH2Cl2, which can have substantial oxygen content due to its reactivity with H2O, oxygen concentrations of about 1020 cm-3 are typical at low deposition temperatures. SiH4, however, can be obtained in higher purity, and oxygen concentrations of 1018 cm-3 can be realized at low temperatures. At higher deposition temperatures (750-900° C), SiO volatilizes, leaving the films grown from all sources with low oxygen concentrations, typically less than 5 × 1017 cm-3. Carbon incorporation is much less of a problem since it is present to a lesser extent both in the chamber background and in the source gases. Carbon levels less than or equal to 1018 cm-3 can be obtained at all deposition temperatures greater than about 650° C. The performance ofp/n junctions is shown to degrade significantly for junctions grown below 850° C. We conclude that for growth of long lifetime Si films in the temperature range <800° C, that low residual H2O partial pressures (<10-10 Torr) are desired. Therefore, CVD chambers should be loadlocked and also capable of base pressures as low as about 10-9 Torr.  相似文献   

18.
Optimization of thin‐film transistors performance is usually accompanied by an increase of the process temperature. This work presents a method to raise the field effect mobility by a factor of 3 without a change of the process parameters. The modification involves a solution doping process where an ammine zinc complex is formed in the presence of metal ions of the 13th group, namely gallium and indium. Morphological studies, including scanning electron microscopy and atomic force microscopy, reveal the difference among the resulting films. Moreover, X‐ray diffraction results show that the doping affects the preferred orientation of the zinc oxide crystals in the resulting film. The electrical properties vary distinctly and are best for a solution doped with both gallium and indium. With a double‐layer system the performance of this new precursor exceeds field effect mobility values of 1 cm2 V?1 s?1 after a maximum process temperature of 160 °C.  相似文献   

19.
Remote plasma-enhanced chemical vapor deposition (RPCVD) is a low temperature growth technique which has been successfully employed inin situ remote hydrogen plasma clean of Si(100) surfaces, silicon homoepitaxy and Si1- xGex heteroepitaxy in the temperature range of 150–450° C. The epitaxial process employs anex situ wet chemical clean, anin situ remote hydrogen plasma clean, followed by a remote argon plasma dissociation of silane and germane to generate the precursors for epitaxial growth. Boron doping concentrations as high as 1021 cm?3 have been achieved in the low temperature epitaxial films by introducing B2H6/He during the growth. The growth rate of epitaxial Si can be varied from 0.4Å/min to 50Å/min by controlling therf power. The wide range of controllable growth rates makes RPCVD an excellent tool for applications ranging from superlattice structures to more conventional Si epitaxy. Auger electron spectroscopy analysis has been employed to confirm the efficacy of this remote hydrogen plasma clean in terms of removing surface contaminants. Reflection high energy electron diffraction and transmission electron microscopy have been utilized to investigate the surface structure in terms of crystallinity and defect generation. Epitaxial Si and Si1-xGex films have been grown by RPCVD with defect densities below the detection limits of TEM (~105 cm-2 or less). The RPCVD process also exploits the hydrogen passivation effect at temperatures below 500° C to minimize the adsorption of C and 0 during growth. Epitaxial Si and Si1-xGex films with low oxygen content (~3 × 1018 cm-3) have been achieved by RPCVD. Silicon and Si/Si1-xGex mesa diodes with boron concentrations ranging from 1017 to 1019 cm-3 in the epitaxial films grown by RPCVD show reasonably good current-voltage characteristics with ideality factors of 1.2-1.3. A Si/Si1-xGex superlattice structure with sharp Ge transitions has been demonstrated by exploiting the low temperature capability of RPCVD.In situ plasma diagnostics using single and double Langmuir probes has been performed to reveal the nature of the RPCVD process.  相似文献   

20.
This report describes the homo-epitaxial growth of InSb by the Metal-Organic Chemical Vapor Deposition Method (MOCVD) using triethylindium (TEIn) and stibine (SbH3) for indium and antimony sources, respectively. Single crystal InSb layers were grown at 400° C. The gas flow rate ratio (= SbH3/TEIn) should be more than 8 in order to grow a layer with good morphology. The epitaxial layer was n-type, with a carrier density and mobility of 1.5 x 1016 cm-3 and 7.6 x 104 cm2/Vs, respectively, at 77 K. By inserting a buffer layer grown at 400° C, the single crystal InSb layer was grown even at 300° C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号