首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A new type of reactor,featured with impinging stream-rotating packed bed(IS-RPB)and coil pipes,was designed and used to prepare p-hydroxybenzaldehyde(PHB)by hydrolysis from diazonium salts.The influence of operating parameters,such as reaction temperature,reaction time and high gravity factor,on the yield of PHB was investigated.Compared with the traditional kettle-type reactor,the yield of PHB with the new reactor is increased significantly and the reaction time is much shorter.Under the optimum conditions,the yield of PHB is increased from 51%to 84.1%.The reactor offers an opportunity for replacing the traditional batch mode operation with a continuous process.  相似文献   

2.
An Experimental Investigation of Hydrogen Production from Biomass   总被引:3,自引:0,他引:3  
In gaseous products of biomass steam gasification, there exist a lot of CO, CH4 and other hydrocarbons that can be converted to hydrogen through steam reforming reactions. There exists potential hydrogen production from the raw gas of biomass steam gasification. In the present work, the characteristics of hydrogen production from biomass steam gasification were investigated in a small-scale fluidized bed. In these experiments, the gasifying agent (air) was supplied into the reactor from the bottom of the reactor and the steam was added into the reactor above biomass feeding location. The effects of reaction temperature, steam to biomass ratio, equivalence ratio (ER) and biomass particle size on hydrogen yield and hydrogen yield potential were investigated. The experimental results showed that higher reactor temperature, proper ER, proper steam to biomass ratio and smaller biomass particle size will contribute to more hydrogen and potential hydrogen yield.  相似文献   

3.
In preparation of fuel alcohol from biomass as feedstock, hydrolysis with dilute acid as catalyst is one way to produce fermentable saccharide, xylose and glucose. However, the acid is also the catalyst in degradation of xylose and glucose and the yield of sacchride is dependent on the kinetic behaviors of saccharide. The degradation kinetics of xylose and glucose in the hydrolysate was investigated under the conventional process conditions of hydrogen ion concentration from 0.05 to 0.2 mol/L and temperature from 150 to 200℃. With a numerical calculation method, the kinetic parameters were estimated, and the activation energy of xylose and glucose in the degradation reaction was obtained. The kinetic equations correlating the effect of hydrogen ion concentration on the rate constants of degradation reaction were established. Comparison between the calculated results from the equations and experimental ones proved that the established kinetic model could satisfactorily predict the degradation behavior of xylose and glucose in the acidic hydrolysate.  相似文献   

4.
In the established apparatus, the converaion ratios of cellaloee sulfation (X) under dif-ferent salfation conditlons were measured. The range of temperature was from -5℃ to 5℃, and the H2SO4 concentration was from 3.1 mol.L^-1 to 4.5 mol.L^-1. The experimental results were used for the establishment of the kinetic model for cellulose sulfation. With the model, X values and the yield of NaCS (Y) can be calculated, thus the reaction with respect to H2SO4 concentration is determined to be third order.  相似文献   

5.
This paper investigated the secondary cracking of gasoline and diesel from the catalytic pyrolysis of Daqing atmospheric residue on catalyst CEP-1 in a fluidized bed reactor.The results show that the secondary cracking reactivity of gasoline and diesel is poor,and the yield of total light olefins is only about 10%(by mass).As reaction temperature increases,ethylene yield increases,butylene yield decreases,and propylene yield shows a maximum.The optimal reaction temperature is about 670℃for the production of light olefins.With the enhance- ment of catalyst-to-oil mass ratio and steam-to-oil mass ratio,the yields of light olefins increase to some extent. About 6.30%of the mass of total aromatic rings is converted by secondary cracking,indicating that aromatic hy- drocarbons are not easy to undergo ring-opening reactions under the present experimental conditions.  相似文献   

6.
Levulinic acid is a kind of new green platform chemical with wide application. The kinetics of levulinic acid formation from glucose decomposition at high temperature was investigated. Glucose containing 1%, 3% or 5% H2SO4 was treated at 170℃ or 190℃. For the various experimental conditions assayed, the time-courses of glucose and glucose degradation products (including 5-hydroxymethylfurfural and levulinic acid) were established. These variables were correlated with the reaction time based on the equations derived from a pseudo-homogeneous, first-order kinetic model, which provided a satisfactory interpretation of the experimental results. The set of kinetic parameters from regression of experimental data provided useful information for understanding the levulinic acid formation mechanism.  相似文献   

7.
Cu/Zn/Al/Zr纳米纤维催化剂上的CO2加氢合成甲醇过程   总被引:1,自引:0,他引:1       下载免费PDF全文
A highly active Cu/Zn/Al/Zr fibrous catalyst was developed for methanol synthesis from CO2 hydrogenation.Various factors that affect the activity of the catalyst,including the reaction temperature,pressure and space velocity,were investigated.The kinetic parameters in Graaf’s kinetic model for methanol synthesis were obtained.A quasistable economical process for CO2 hydrogenation through CO circulation was simulated and higher methanol yield was obtained.  相似文献   

8.
In this study, we aimed at developing an efficient biocatalytic process for bio-production of cyclic adenosine monophosphate(c AMP) from adenosine triphosphate(ATP). First, adenylate cyclase from Escherichia coli MG1655(EAC) and Bordetella Pertussis(BAC) were expressed in E. coli BL21(DE3) and comparatively analyzed for their activities. As a result, EAC from E. coli MG1655 exhibited a higher activity. However, amount of EAC were obtained in an insoluble form. Therefore, we expressed the first 446 amino acids of EAC(EAC446) to avoid the inclusion body. The effects of induction temperature, incubation time, and incubation p H were further evaluated to improve the expression of EAC446. Subsequently, the reaction process for the production of c AMP with ATP as a starting material was investigated. As none of c AMP was detected in the whole-cell based biocatalytic process, the reaction catalyzed by the crude enzyme was determined for c AMP production. What's more,the reaction temperature, reaction p H, metal ion additives and substrate concentration was optimized, and the maximum c AMP production of 18.45 g·L~(-1) was achieved with a yield of 95.4% after bioconversion of 6 h.  相似文献   

9.
Acylation of 2-methylnaphthalene(2-MN) is a very important reaction in organic synthesis,and the effiency of the continuous reactor is more than one of the batch reactor.Considering that the Friedel–Crafts acylation is a rapid exothermic reaction,in this study,we perform the acylation of 2-MN in a stainless steel microchannel flow reactor,which is characterized by high mass and heat transfer rates.The effect of reactant ratio,mixing temperature,reaction temperature,and reaction time on product yield and selectivity were investigated.Under the optimal conditions,2-methyl-6-propionylnaphthalene(2,6-MPN) was obtained in 85.8% yield with 87.5% selectivity.Compared with the conventional batch system,the continuous flow microchannel reactor provides a more efficient method for the synthesis of 2,6-MPN.  相似文献   

10.
Liquid-phase oxidation of toluene with air has become the main technology for producing benzoic acid in a reactor at present. Based on the kinetic model of the toluene oxidation process obtained from laboratory and mass balance of key component, a novel model is established to simulate the industrial toluene oxidation process, in which the effects of benzaldehyde and benzyl alcohol are considered and the kinetic parameters are revised by industrial data. The simulation results show that the error of benzoic acid yield is within 3.5%. Based on the simulation model, to maximize the benzoic acid yield, an optimization model is proposed to optimize the operating parameters, including toluene feed-in mass flux and temperature. The optimization result indicates that on the allowable operating conditions the maximum benzoic acid yield obtained with the reaction temperature at 167.2 C an the mass flux at 104.1 t·h^- 1 is greater than the current one, which can be used to guide industrial reactor s operation.  相似文献   

11.
近临界水中鱼肉水解制备氨基酸的反应动力学   总被引:2,自引:1,他引:1  
朱宪  程洪斌  朱宁 《化学工程》2008,36(4):31-34
利用鱼肉蛋白制备氨基酸不但具有经济效益,而且为生物质资源高效利用提供技术支持。采用HL-F(0.2 L+1.5 MG)/30 MPa-IIA超临界水反应装置,在无催化剂、反应温度分别为220,240,260℃,反应时间为30 min条件下,对鱼肉蛋白在近临界水中水解为氨基酸的反应动力学进行了实验研究。用AAA-Direct氨基酸分析仪测定不同反应时间中氨基酸总产率,以酸水解鱼肉蛋白得到的氨基酸量为完全水解标准。在水过量的情况下,得到了鱼肉蛋白水解率宏观反应动力学方程。结果表明鱼肉蛋白水解动力学的级数为1.614 7,220,240,260℃下的反应速率常数分别为0.001 7,0.004 5,0.009 7,活化能为145.125 kJ/mol,前置因子A为9.475 7×109,为工业化生产提供了基础数据。  相似文献   

12.
近临界水中低值鱼肉水解制备氨基酸工艺研究   总被引:4,自引:1,他引:3  
研究了近临界水中低值鱼肉水解制备氨基酸的生产工艺.反应器容积为200 mL,反应温度为180~32℃,反应压力为5~26 MPa,反应时间为5~60 min.利用氨基酸分析仪对水解产物中的氨基酸进行定性和定量分析,实验结果发现,实验所用低值鱼肉水解后可得到17种氨基酸.反应温度、反应压力和反应时间对低值鱼肉近临界水解有影响,其中反应温度影响最大,水解产物中不同种类氨基酸的产率随反应温度、反应压力和反应时间的变化规律各不相同.分别对其中8种含量较高、用途较广、附加值较高的氨基酸,进行了反应温度、反应压力、反应时间对水解液中氨基酸浓度影响的实验,得到了在较低的反应温度、合适的反应压力和一定的反应时间内获得较高氨基酸产率的水解工艺.分别采用空气、氮气和二氧化碳作为反应气氛,进行水解实验,结果表明,对亮氨酸、组氨酸和异亮氨酸,应该采用氮气或二氧化碳反应气氛,对其他氨基酸可以采用空气作为反应气氛.  相似文献   

13.
A resource recovery technique using sub‐ and supercritical water hydrolysis was applied to convert waste fish entrails into amino acids. The effect of reaction parameters such as temperature and time necessary for the control of reaction towards optimum yield of amino acids was investigated. Results showed a maximum yield of total amino acids (137 mg/g dry fish) from waste fish entrails at T= 523 K (P = 4 MPa) and reaction time of 60 min in a batch reactor. Under supercritical conditions (e. g., T= 653 K, P = 45 MPa), the yield decreases due to rapid decomposition compared to production rate of amino acids. The results suggest operation of the system at short reaction time and mild temperature condition.  相似文献   

14.
Hydrothermal liquefaction (HTL) is the direct conversion of wet biomass into bio-oil at high temperature (200–400°C) and high pressure (10–25 MPa). In this work, we investigated HTL with 4.5 g of Chlorella and 45 ml of water/ethanol (1:1 vol. ratio) in a 100 ml reactor. Bio-oils produced are characterized via elemental analysis, thermogravimetric analysis, and gas chromatography–mass spectrometry (GC–MS). HTL of Chlorella was investigated at 240 and 250°C for 0 and 15 min under an air or H2 atmosphere and with and without 5% zeolite Y. Temperature increased the bio-oil yield from 38.75% at 240°C to 43.04% at 250°C for 15 min reaction time. Longer reaction time increased the bio-oil yield at 250°C from 39.14% for 0 min to 43.04% for 15 min. The H2 atmosphere had a significant effect for HTL at 240°C. Zeolite Y increased the bio-oil yield significantly from 32.03% to 43.06% at 250°C for 0 min. The carbon content of bio-oil increased with the temperature while the oxygen content decreased. The boiling point distribution of bio-oils in the range of 110–300°C varies with temperature, and atmosphere. At 240°C for 15 min, the 110–300°C range increased from 31.19% in air (240-15-air) to 39.25% in H2 (240-15-H2). The H2 atmosphere increased the content of hydrocarbons, alcohols, and esters from 69.61% in air (240-0-air) to 82.83% in H2 (240-0-H2). Overall, temperature, reaction time, atmosphere, and catalyst all significantly influenced the yield and/or quality of bio-oils from HTL of Chlorella.  相似文献   

15.
Reaction of d-glucose in water to yield 5-hydroxymethylfurfural (5-HMF), 1,2,4-benzenetriol (BTO) and furfural was studied at high temperatures (up to 400 °C) and high pressures (up to 80 MPa) using a continuous flow reactor. Maximum temperature and pressure conditions gave maximum furfural yield. Increasing pressure from 40 to 70 and 80 MPa enhanced dehydration reactions to 5-HMF, but also enhanced hydrolysis of 5-HMF leading to the production of BTO and thus lead to lower yields of 5-HMF (below 10%). Remarkably, the dehydration reaction to 5-HMF and the hydrolysis of 5-HMF were both enhanced by the increase in water density at 400 °C.  相似文献   

16.
A combined supercritical/subcritical technology was used as a pre-treatment and hydrolysis method for ethanol production from cellulose/lignocelluloses. In a batch study for supercritical hydrolysis, which is the primary step of the combined technology, 60 mg of microcrystalline cellulose in 2.5 ml deionized water was loaded into each reactor and heated in a salt bath at a selected temperature for a specified reaction time. Cellulose was quickly hydrolyzed to oligosaccharides, hexoses and other small molecular products at temperatures above the critical point of water. Temperature and reaction time were the two key parameters that determined the products of cellulose hydrolysis. The highest yield of oligosaccharides (approximately 40%) was obtained at optimum conditions of 380 °C and a reaction time of 16 s. The corresponding yield of hexoses was 24%, giving a maximum yield of hydrolysis products of approximately 63%. A complete decomposition of hydrolysis products occurred at higher temperatures and/or longer reaction times. A kinetic analysis was performed to explain the reaction of cellulose in supercritical water. The results presented here provide a rigid framework for the use of combined supercritical/subcritical technology in subsequent research.  相似文献   

17.
Temperature dependence of processes during oxidation of PAN fibres   总被引:1,自引:0,他引:1  
The 3000-PAN-filament tows have been stretched by a constant axial load during heating in air at a constant rate of . The extension of the tow begins about the glass-transition temperature (70°C). Temperature dependence of the fibre diameter, width of X-ray reflection of the PAN, and endothermic effect occurring at low temperature (below 240°C), suggest that at 130°C begins a molecular rearrangement. IR spectra of the oxidized fibres and gas evolution suggest that near this temperature (at about 145°C) begins cyclization, but the cyclized fraction of the fibres remains very low up to over 220°C, unless a prolonged oxidation at this temperature is carried out. TGA and DTA results suggest that at about 240°C begins rapid cyclization, which is at about 320°C followed by partial degradation of the fibres. In these processes the fibres lose about 26% of their original weight. Final degradation of the fibres begins at about 400°C.  相似文献   

18.
近临界水中鱼蛋白水解及水解液脱色研究   总被引:1,自引:1,他引:1  
鱼类蛋白包括鱼肉及鱼类加工过程中产生的废弃物,文中采用近临界水技术,在反应温度180—320℃,反应压力5—26 MPa,反应时间5—60 min,无催化剂条件下将其制备成氨基酸,不但能提高附加值,而且有利于环境保护。实验结果发现,水解物含17种氨基酸,水解物中不同种类氨基酸的产率随反应温度、反应压力和反应时间的变化规律各不相同。对其中8种含量高、用途广、附加值高的氨基酸,分别得到了最佳水解工艺。以颗粒状活性炭为脱色剂,对水解液在不同pH值、活性炭用量、吸附温度和吸附时间条件下进行脱色实验,并考察脱色率和氨基酸损失率,结果表明,较好的脱色工艺条件为:pH=4.0,活性炭用量为0.020 g/mL,吸附温度45℃,吸附时间25 min,脱色率90%。被活性炭吸附的氨基酸,可以通过解吸附得到回收。  相似文献   

19.
Depolymerization of poly(ethylene naphthalate) (PEN) in subcritical water was performed in a fused silica capillary reactor (FSCR) and an autoclave reactor. The phase behaviors of PEN in water during the heating‐cooling process in the FSCR were observed under microscope and images were captured by digital camera. Reaction conditions for PEN hydrolysis in the autoclave reactor were chosen based on the experimental results obtained from the FSCR. Under autogenous pressures in the autoclave reactor, the effects of the water/PEN mass ratio (8.0 g/1.0 g to 16.0 g/1.0 g), reaction temperature (240–280°C) and reaction time (5–60 min) on the depolymerization yield and products yields were investigated. The main products of depolymerization were identified and quantified as 2,6‐naphthalene dicarboxylic acid (2,6‐NDA) and ethylene glycol (EG). PEN was completely depolymerized at 260°C in 60 min with an optimal water/PEN mass ratio of 12.0 g/1.0 g (12:1). The yields of 2,6‐NDA and EG were optimized to 83.1% and 79.7%, respectively. Reaction kinetics analysis showed that the PEN depolymerization in subcritical water was first‐order and the activation energy was 95 kJ mol?1. Additionally, a reaction pathway was proposed based on the experimental results. POLYM. ENG. SCI., 57:1382–1388, 2017. © 2017 Society of Plastics Engineers  相似文献   

20.
亚临界水中大豆渣水解制备氨基酸工艺研究   总被引:1,自引:0,他引:1  
豆渣是大豆加工过程中的主要副产物。今在亚临界水中对豆渣水解制备氨基酸的生产工艺进行了研究,为大豆的综合利用开辟了一条新的途径。利用氨基酸分析仪对水解产物中的氨基酸进行定性和定量分析,实验结果发现,大豆渣水解后可得到17种氨基酸。考察了反应温度、反应时间、物料浓度以及CO2分压对氨基酸总收率的影响,并进行正交试验。研究结果表明,亚临界水解法高效快速,工艺简单,CO2气体的加入有利于增加氨基酸总收率,较佳的水解工艺条件为:T=200℃,P(CO2)=3.0 MPa,w=5.0 mg mL 1,t=15 min,氨基酸的总收率为14.25%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号