首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A summer air quality monitoring campaign focusing on daily variation of ultrafine (<180 nm in diameter) particle chemical characteristics was conducted in a typical urban site in Los Angeles during June-July 2006. Ultrafine particles (UFP) were collected weekly for two 3 h periods each day, one to capture the morning commute (06:00-09:00 PDT) (Pacific Daylight Time) and one to investigate photochemically altered particles (13:00-16:00 PDT). Samples were analyzed for ionic compounds, metals, trace elements, elemental carbon, and organic carbon. In addition, measurements of individual organic species and their variation with time of day at the urban site were conducted. The relative abundances of alkanes, PAH, and hopanes in the morning denote a strong influence of commute traffic emissions on ultrafine particle concentrations. By contrast, afternoon concentrations of oxygenated organic acids and sulfate rose, while other species were diluted by increased mixing height or lost due to increasing temperature. These are clear indicators that secondary photochemical reactions are a major formation mechanism of ultrafine aerosols in the afternoon. The concentrations of organic species originating from vehicular emissions measured in this study compare favorably to those from freeway-adjacent measurements by using CO2 concentrations to adjust for dilution, demonstrating the effectiveness of this tool for relating sites affected by vehicular emissions.  相似文献   

2.
Continuous atmospheric measurements of speciated mercury (Hg) (elemental mercury (Hg?), reactive gaseous mercury (RGM), and particulate mercury (Hgp)) were made in Rochester, NY from Dec 2007 to May 2009. Continuous measurements of ozone (O?), sulfur dioxide (SO?), carbonmonoxide (CO), particulate matter (PM?.?), and meteorological data were also available. A principle components analysis (PCA) of 3886 observations of 13 variables for the period identified six major factors. Melting snow was observed to be a source of Hg?in winters. Positive correlations between RGM and O? in the spring and summer may be indicative of Hg? oxidation. RGM concentrations increased simultaneously with SO? suggesting the influence of coal fired power plants (CFPP). The ?fth factor (F5) containing O? (high negative loading), CO (positive loading), Hg? and Hg(p) (positive), and/or RGM (negative) was identified as a mobile source which was usually observed during morning rush hours (6:00-9:00 a.m.). The concentrations of the three mercury species from the direction of the CFPP were significantly reduced following the shutdown of this source.  相似文献   

3.
Determining the major sources of particles that act as cloud condensation nuclei (CCN) represents a critical step in the development of a more fundamental understanding of aerosol impacts on cloud formation and climate. Reported herein are direct measurements of the CCN activity of newly formed ambient particles, measured at a remote rural site in the Sierra Nevada Mountains of Northern California. Nucleation events in the winter of 2009 occurred during two pristine periods following precipitation, with higher gas-phase SO(2) concentrations during the second period, when faster particle growth occurred (7-8 nm/h). Amines, as opposed to ammonia, and sulfate were detected in the particle phase throughout new particle formation (NPF) events, increasing in number as the particles grew to larger sizes. Interestingly, long-range transport of SO(2) from Asia appeared to potentially play a role in NPF during faster particle growth. Understanding the propensity of newly formed particles to act as CCN is critical for predicting the effects of NPF on orographic cloud formation during winter storms along the Sierra Nevada Mountain range. The potential impact of newly formed particles in remote regions needs to be compared with that of transported urban aerosols when evaluating the impact of aerosols on clouds and climate.  相似文献   

4.
Particle number concentration data are reported from a total of eight urban site locations in the United Kingdom. Of these, six are central urban background sites, while one is an urban street canyon (Marylebone Road) and another is influenced by both a motorway and a steelworks (Port Talbot). The concentrations are generally of a similar order to those reported in the literature, although higher than those in some of the other studies. Highest concentrations are at the Marylebone Road site and lowest are at the Port Talbot site. The central urban background locations lie somewhere between with concentrations typically around 20 000 cm(-3). A seasonal pattern affects all sites, with highest concentrations in the winter months and lowest concentrations in the summer. Data from all sites show a diurnal variation with a morning rush hour peak typical of an anthropogenic pollutant. When the dilution effects of windspeed are accounted for, the data show little directionality at the central urban background sites indicating the influence of sources from all directions as might be expected if the major source were road traffic. At the London Marylebone Road site there is high directionality driven by the air circulation in the street canyon, and at the Port Talbot site different diurnal patterns are seen for particle number count and PM10 influenced by emissions from road traffic (particle number count) and the steelworks (PM10) and local meteorological factors. Hourly particle number concentrations are generally only weakly correlated to NO(x) and PM10, with the former showing a slightly closer relationship. Correlations between daily average particle number count and PM10 were also weak. Episodes of high PM10 concentration in summer typically show low particle number concentrations consistent with transport of accumulation mode secondary aerosol, while winter episodes are frequently associated with high PM10 and particle number count arising from poor dispersion of local primary emissions.  相似文献   

5.
New particle formation and growth events have been observed in several urban areas and are of concern due to their potential negative effects on human health. The main purpose of this study was to investigate the chemistry of ultrafine particles during the growth phase of the frequently observed nucleation events in Pittsburgh (approximately 100 events per year) and therefore infer the mechanisms of new particle growth in the urban troposphere. An Aerodyne aerosol mass spectrometer (AMS) and two SMPS systems were deployed at the U.S. EPA Pittsburgh Supersite during September 2002. Significant nucleation events were observed in 3 out of the 16 days of this deployment, including one of the 10 strongest nucleation events observed in Pittsburgh over a period of 15 months. These events appear to be representative of the climatology of new particle formation and growth in the Pittsburgh region. Distinctive growth of sulfate, ammonium, organics, and nitrate in the ultrafine mode (33-60 nm in a vacuum aerodynamic diameter or approximately 18-33 nm in physical diameter) was observed during each of these three events, with sulfate always being the first (and the fastest) species to increase. Ultrafine ammonium usually increased 10-40 min later than sulfate, causing the ultrafine mode particles to be more acidic during the initial stages of the nucleation events. Significant increase of ultrafine organics often happened after 11:00 a.m., when photochemistry is more intense. This observation coupled with a parallel increase of ultrafine m/z 44, a mass fragment generally representative of oxygenated organic compounds, indicates that secondary organic species contribute significantly to the growth of particles at a relatively later time of the event. Among all these four species, nitrate was always a minor component of the ultrafine particles and contributed the least to the new particle growth.  相似文献   

6.
An aerosol time-of-flight mass spectrometer (ATOFMS) was used to detect trimethylamine (TMA) in 0.52-1.9 μm particles at urban and rural sites in Southern Ontario during the summer and winter of 2007. During the summer, TMA-containing particles were observed exclusively during high relative humidity or fog events at both the urban and rural sites. In the wintertime, greater concentrations of TMA-containing particles were linked to cloud processing of aerosol in air masses originating from over agricultural and livestock areas. A laboratory study revealed that, at high relative humidity (~ 100%), gas phase TMA at concentrations ranging from 2 to 20,000 ppt partitions preferentially to acidic particles present in the ambient air. On the basis of the field and laboratory studies, it appears that gas phase TMA present in ambient air partitions onto pre-existing particles preferentially during periods of acidic cloud/fog processing, leading to the presence of TMA-containing particles in the 0.52-1.9 μm size range.  相似文献   

7.
To investigate the relationship among sources, chemical composition, and redox activity of coarse particulate matter (CPM), three sampling sites were set up up in the Los Angeles Basin to collect ambient coarse particles at four time periods (morning, midday, afternoon, and overnight) in summer 2009 and winter 2010. The generation of reactive oxygen species (ROS) was used to assess the redox activity of these particles. Our results present distinct diurnal profiles of CPM-induced ROS formation in the two seasons, with much higher levels in summer than winter. Higher ROS activity was observed in the midday/afternoon during summertime, while the peak activity occurred in the overnight period in winter. Crustal materials, the major component of CPM, demonstrated very low water-solubility, in contrast with the modestly water-soluble anthropogenic metals, including Ba and Cu. The water-soluble fraction of four elements (V, Pd, Cu, and Rh) with primary anthropogenic origins displayed the highest associations with ROS activity (R(2) > 0.60). Our results show that coarse particles generated by anthropogenic activities, despite their low contribution to CPM mass, are important to the biological activity of CPM, and that a more targeted control strategy may be needed to protect the public health from these toxic CPM sources.  相似文献   

8.
Worldwide people are exposed to toxic ultrafine particles (UFP, with diameters (dp) less than 100 nm) and nanoparticles (NP, dp < 50 nm) under a variety of circumstances. To date, very limited information is available on human exposure to freshly emitted UFP and NP while traveling on major roads and freeways. We report in-cabin and outdoor measurements of particle number concentration and size distributions while driving three vehicles on Los Angeles freeways. Particle number concentrations and size distributions were measured under different vehicle ventilation settings. When the circulation fan was set to on, with substantial external air intake, outside changes in particle counts caused corresponding in-cabin changes approximately 30-60 s later, indicating an maximal air exchange rate of about 120-60 h(-1). Maximum in-cabin protection (approximately 85%) was obtained when both fan and recirculation were on. In-cabin and outdoor particle size distributions in the 7.9-217 nm range were observed to be mostly bimodal, with the primary peak occurring at 10-30 nm and the secondary at 50-70 nm. The vehicle's manufacture-installed particle filter offered an in-cabin protection of about 50% for particles in the 7-40 nm size range and 20-30% for particles in the 40 to approximately 200 nm size range. For an hour daily commute exposure, the in-vehicle microenvironment contributes approximately 10-50% of people's daily exposure to UFP from traffic.  相似文献   

9.
Cooking, particularly frying, is an important source of particles indoors. Few studies have measured a full range of particle sizes, including ultrafine particles, produced during cooking. In this study, semicontinuous instruments with fine size discriminating ability were used to calculate particle counts in 124 size bins from 0.01 to 2.5 microm. Data were collected at 5 min intervals for 18 months in an occupied house. Tracer gas measurements were made every 10 min in each of 10 rooms of the house to establish air change rates. Cooking episodes (N = 44) were selected meeting certain criteria (high concentrations, no concurrent indoor sources, long smooth decay curves), and the number and volume of particles produced were determined for each size category. For each episode, the particle decay rate was determined and used to determine the source strength for each size category. The selected cooking episodes (mostly frying) were capable of producing about 10(14) particles over the length of the cooking period (about 15 min), more than 90% of them in the ultrafine (< 0.1 microm) range, with an estimated whole-house volume concentration of 50 (microm/cm)3. More than 60% of this volume occurred in the 0.1-0.3 microm range. Frying produced peak numbers of particles at about 0.06 microm, with a secondary peak at 0.01 microm. The peak volume occurred at a diameter of about 0.16 microm. Since the cooking episodes selected were biased toward higher concentrations, the particle concentrations measured during about 600 h of morning and evening cooking over a full year were compared to concentrations measured during noncooking periods at the same times. Cooking was capable of producing more than 10 times the ultrafine particle number observed during noncooking periods. Levels of PM2.5 were increased during cooking by a factor of 3. Breakfast cooking (mainly heating water for coffee and using an electric toaster) produced concentrations about half those produced from more complex dinnertime cooking. Although the number and volume concentrations observed depend on air change rates, house volume, and deposition rates due to fans and filters, the source strengths calculated here are independent of these variables and may be used to estimate number and volume concentrations in other types of homes with widely varying volumes, ventilation rates, and heating and air-conditioning practices.  相似文献   

10.
In various parts of the Northern hemisphere air-borne S exhibits a seasonality, with isotopically light (i.e., 32S-rich) sulfur predominating in the warm summer months. Such seasonality has been reported from the United States, Canada, Japan, and China. Elevated biological emissions of isotopically light S in summer, a temperature-dependent isotope fractionation accompanying the oxidation of SO2, and heavy rains in winter bringing 34S-rich marine S have been suggested as the controlling mechanisms. In the atmosphere of Central Europe, one of the most severely polluted regions of the world, we have found an opposite seasonal trend: Isotopically light SO2-S predominates in the cold winter months, whereas isotopically heavy SO2-S is typical of the summer. The low delta34S values of air-borne SO2 in winter are influenced by low-delta34S emissions from local coal-burning power plants. The coal contains isotopically light S (mean delta34S of 1.6/1000). Higher demand for electricity during the heating season leads to higher anthropogenic S emission rates in winter. On a yearly basis, atmospheric sulfate S in Central Europe is isotopically heavier than atmospheric SO2-S by 4/1000. Atmospheric oxidation of SO2 is accompanied by an isotope fractionation resulting in 34S-enriched sulfate. In addition to the seasonality in air-borne delta34S(SO2), we report also an interannual trend of 1/1000 yr(-1) toward isotopically light sulfate S in atmospheric deposition. This interannual trend cannot be explained by a change in pollution sources accompanying the present massive environmental cleanup. To investigate the role of biological S emissions from the soil of heavily polluted ecosystems, we conducted a series of laboratory experiments using repacked soil columns and 34S-enriched precipitation under summer and winter temperatures. These experiments indicate that, under summer temperatures, the 34S-labeled precipitation is largely captured by the upper organic-rich soil horizons, a high proportion (53-74%) of S input is revolatilized, and the biologically reemitted S is isotopically light. Under winter temperatures more precipitation S is leached to the bottom of the soil columns. Our experiments have shown that biological emissions in Central Europe can be sizable. Yet, they cannot be singled out in the overall SO2 isotope pattern in the atmosphere. The main reason is continuous, variable (0-4/1000), open-system depletion in 34S in the residual SO2 during the isotopically selective SO2-to-SO4(2-) conversion.  相似文献   

11.
Elevated levels of (239,240)Pu and 241Am have been present in surficial soils of the Rocky Flats Environmental Technology Site (RFETS), CO, since the 1960s, when soils were locally contaminated in the 1960s by leaking drums stored on the 903 Pad. Further dispersion of contaminated soil particles was by wind and water. From 1998 until 2001, we examined actinide ((239,240)Pu and 241Am) concentrations and phase speciation in the surface environment at RFETS through field studies and laboratory experiments. Measurements of total (239,240)Pu and 241Am concentrations in storm runoff and pond discharge samples, collected during spring and summer times in 1998-2000, demonstrate that most of the (239,240)Pu and 241Am transported from contaminated soils to streams occurred in the particulate (> or = 0.45 microm; 40-90%) and colloidal (approximately 2 nm or 3 kDa to 0.45 microm; 10-60%) phases. Controlled laboratory investigations of soil resuspension, which simulated storm and erosion events, confirmed that most of the Pu in the 0.45 microm filter-passing phase was in the colloidal phase (> or = 80%) and that remobilization of colloid-bound Pu during soil erosion events can be greatly enhanced by humic and fulvic acids present in these soils. Most importantly, isoelectric focusing experiments of radiolabeled colloidal matter extracted from RFETS soils revealed that colloidal Pu is in the four-valent state and is mostly associated with a negatively charged organic macromolecule with a pH(IEP) of 3.1 and a molecular weight of 10-15 kDa, rather than with the more abundant inorganic (iron oxide and clay) colloids. This finding has important ramifications for possible remediation, erosion controls, and land-management strategies.  相似文献   

12.
In the United States, residential wood combustion (RWC) is responsible for 7.0% of the national primary PM(2.5) emissions. Exposure to RWC smoke represents a potential human health hazard. Organic components of wood smoke particles absorb light at 370 nm more effectively than 880 nm in two-wavelength aethalometer measurements. This enhanced absorption (Delta-C = BC(370 nm) - BC(880 nm)) can serve as an indicator of RWC particles. In this study, aethalometer Delta-C data along with measurements of molecular markers and potassium in PM(2.5) were used to identify the presence of airborne RWC particles in Rochester, NY. The aethalometer data were corrected for the loading effect. Delta-C was found to strongly correlate with wood smoke markers (levoglucosan and potassium) during the heating season. No statistically significant correlation was found between Delta-C and vehicle exhaust markers. The Delta-C values were substantially higher during winter compared to summer. The winter diurnal pattern showed an evening peak around 21:00 that was particularly enhanced on weekends. A relationship between Delta-C and PM(2.5) was found that permits the estimation of the contribution of RWC particles to the PM mass. RWC contributed 17.3% to the PM(2.5) concentration during the winter. Exponential decay was a good estimator for predicting Delta-C concentrations at different winter precipitation rates and different wind speeds. Delta-C was also sensitive to remote forest fire smoke.  相似文献   

13.
There are currently no epidemiological studies on health effects of long-term exposure to ultrafine particles (UFP), largely because data on spatial exposure contrasts for UFP is lacking. The objective of this study was to develop a land use regression (LUR) model for UFP in the city of Amsterdam. Total particle number concentrations (PNC), PM10, PM2.5, and its soot content were measured directly outside 50 homes spread over the city of Amsterdam. Each home was measured during one week. Continuous measurements at a central urban background site were used to adjust the average concentration for temporal variation. Predictor variables (traffic, address density, land use) were obtained using geographic information systems. A model including the product of traffic intensity and the inverse distance to the nearest road squared, address density, and location near the port explained 67% of the variability in measured PNC. LUR models for PM2.5, soot, and coarse particles (PM10, PM2.5) explained 57%, 76%, and 37% of the variability in measured concentrations. Predictions from the PNC model correlated highly with predictions from LUR models for PM2.5, soot, and coarse particles. A LUR model for PNC has been developed, with similar validity as previous models for more commonly measured pollutants.  相似文献   

14.
Follicle dynamics and oocyte viability in Holstein primiparous and multiparous cows and the relationships between fertility and the biochemical and physical properties of oocyte membranes with season were examined. The conception rates of primiparous (n = 70 885) and multiparous (n = 143 490) cows differed, peaking in the winter and decreasing in the summer. The number of follicles 3-8 mm in diameter per ovary was higher in winter (19.6) compared with summer (12.0). However, in winter the percentage of ovaries with fewer than ten follicles per ovary was 16%, in contrast to 50% in summer. After aspiration of follicles, 7.5 oocytes per ovary were found in winter and 5.0 oocytes per ovary in summer. Cleavage to the two- to four-cell stage after chemical activation was greater in winter than in summer; this was enhanced at the morula stage and embryo development to the blastocyst stage was significantly higher in winter than in summer. Determination of the lipid phase transition in oocyte membranes revealed a shift of 6 degrees C between summer and winter. Fatty acid composition of phospholipids from follicular fluid, granulosa cells and oocytes indicated that there was a higher percentage of saturated fatty acids during the summer and that the percentages of mono-unsaturated and polyunsaturated fatty acids were higher in oocytes and granulosa cells during the winter. Oocytes and granulosa cells had similar fatty acid compositions, in contrast to follicular fluid. These results may explain the differences in the ability of oocytes to develop to the blastocyst stage at different seasons. Thus, temperature changes may lead to changes in membrane properties, which, in turn, can influence oocyte function and fertility.  相似文献   

15.
Variability of apparent particle density of an urban aerosol   总被引:2,自引:0,他引:2  
The day to day and diurnal variation of apparent particle density was studied using highly time-resolved measurements of particle number distribution and fine-particle mass concentration. The study was conducted in Erfurt, Germany, from January 1, 1999, to November 22, 2000. A setup consisting of a differential mobility particle spectrometer and a laser aerosol spectrometer was used for particle number distribution measurements. PM2.5 particle mass was measured in parallel on an hourly basis using a tapered element oscillating microbalance (TEOM) and on daily base by using a Harvard marple impactor (HI). For the estimation of the mean apparent density of particles, number size distributions were converted into volume size distributions, assuming that the particles were spherically shaped. The volume size distributions were integrated over the range of 10 nm to 2.03 microm Stokes equivalent diameter to obtain volume concentrations. Mean apparent particle density was calculated as ratio of mass concentration and volume concentration. The mean apparent particle density, determined from HI and number size distribution on a daily basis was 1.6 +/- 0.5 g cm(-3). We found a strong day-to-day variation of apparent density ranging from 1.0 to 2.5 g cm(-3) (5th and 95th percentile). Furthermore, the apparent density showed pronounced diurnal pattern both in summer and in winter and also on weekdays and weekends. The apparent density was lowest in the morning and highest in the afternoon. The mean apparent density on an hourly basis was 1.4 +/- 0.5 and 1.5 +/- 0.5 g cm(-3) for PM2.5TEOM and corrected PM2.5TEOM using regression equation between daily mass concentration of HI and TEOM, respectively. The strong diurnal variation of apparent particle density was associated predominantly with the vertical temperature inversion and with traffic intensity. Thus, the apparent particle density depends on the physical particle properties and might be related to chemical composition of the sampled particle.  相似文献   

16.
We measured exposure to fine particles (PM2.5) and polycyclic aromatic hydrocarbons (PAHs), including carcinogenic PAHs, in multiple locations for a diverse population of participants who resided in Shizuoka, Japan. In summer and winter 2002 we surveyed personal concentrations, those of four primary indoor microenvironments-living room, bedroom, kitchen (summer only), and workplace--and those outside the subjects' houses. Concentrations of PM2.5 and PAHs tended to be higher during winter. Median PM2.5 concentration was highest in living room samples during winter but in personal samples during summer. The median PAH concentrations normalized to the cancer potency equivalence factor of benzo[a]pyrene (BaP-TEQ) was highest in the bedroom during winter but outdoors in summer. Personal exposure level profiles differed markedly between smokers and nonsmokers. Personal exposures to BaP ([BaP]p) and BaP-TEQ ([BaP-TEQ]P) in nonsmokers were strongly correlated. Personal exposures of nonsmokers, as calculated from the corresponding time-weighted indoor and outdoor concentrations, were consistent with measured levels of BaP but not PM2.5. Personal exposure of nonsmokers to BaP, as calculated from the time-weighted living room, bedroom, and either workplace or outdoor concentrations, accounted for 92-107% of the measured levels of BaP-TEQ.  相似文献   

17.
Although most of forested watersheds in temperate and boreal regions are snow-covered for a substantial portion of the year, responses of biogeochemical processes under the snow pack to climatic fluctuations are poorly understood. We investigated responses of dissolved organic carbon (DOC) and surface water chemistry in stream and lake discharge waters draining the Arbutus Lake Watershed in the Adirondacks of New York State to climatic fluctuations during the snow-covered months from December through April. Interannual variability in stream discharge corresponded to changes in air temperature and snow pack depth across the winter months. Concentrations of DOC in stream water draining a subcatchment showed immediate positive responses to rising temperatures and subsequent increases in runoff during most snowmelt events. Increases in DOC concentrations usually coincided with decreases in pH and increases in total aluminum (Al) concentrations, while the correlations between concentrations of DOC and SO4(2-) or base cations were negative. Although changes in air temperature, snow pack depth, and runoff were all significantly correlated with stream water concentrations of major solutes, stepwise linear regression found that runoff was the best predictor of solute concentrations. Results of stepwise linear regression with long-term monthly monitoring data collected at the lake outlet showed weaker but still consistent climatic effects on interannual variations in concentrations of DOC and other solutes. Over the 17 winter periods from December 1983 through April 2000, changes in seasonal average concentrations of DOC, H+, and Al in lake discharge generally corresponded to interannual variations in temperature, precipitation, and runoff, while SO4(2-) and base cations displayed an opposite trend. The results suggest that snowmelt-mediated DOC responses to temperature fluctuations during the winter months might offset increases in the surface water pH caused by decreasing acidic deposition and pose a potential hazard of Al toxicity in surface waters.  相似文献   

18.
Particle size distributions were measured under real world dilution conditions in the exhaust plume of a diesel passenger car closely followed by a mobile laboratory on a high speed test track. Under carefully controlled conditions the exhaust plume was continuously sampled and analyzed inside the mobile laboratory. Exhaust particle size distribution data were recorded together with exhaust gas concentrations, i.e., CO, CO2, and NO(x), and compared to data obtained from the same vehicle tested on a chassis dynamometer. Good agreement was found for the soot mode particles which occurred at a geometric mean diameter of approximately 50 nm and a total particle emission rate of 10(14) particles km(-1). Using 350 ppm high sulfur fuel and the standard oxidation catalyst a bimodal size distribution with a nucleation mode at 10 nm was observed at car velocities of 100 km h(-1) and 120 km h(-1), respectively. Nucleation mode particles were only present if high sulfur fuel was used with the oxidation catalyst installed. This is in agreement with prior work that these particles are of semivolatile nature and originate from the nucleation of sulfates formed inside the catalyst. Temporal effects of the occurrence of nucleation mode particles during steady-state cruising and the dynamical behavior during acceleration and deceleration were investigated.  相似文献   

19.
Ultrafine particulate matter (UFP; diameter <0.1 μm) concentrations are relatively high on the freeway, and time spent on freeways can contribute a significant fraction of total daily UFP exposure. We model real-time size-resolved UFP concentrations in summer time on-freeway air. Particle concentrations (32 bins, 5.5 to 600 nm) were measured on Minnesota freeways during summer 2006 and 2007 ( Johnson, J. P.; Kittelson, D. B.; Watts, W. F. Environ. Sci. Technol. 2009 , 43 , 5358 - 5364 ). Here, we develop and apply two-way stratified multilinear regressions, using an approach analogous to mobile-monitoring land-use regression but using real-time meteorological and traffic data. Our models offer the strongest predictions in the 10-100 nm size range (adj-R(2): 0.79-0.89, average adj-R(2): 0.85) and acceptable but weaker predictions in the 130-200 nm range (adj-R(2): 0.41-0.62, average adj-R(2): 0.52). The aggregate model for total particle counts performs well (adj-R(2) = 0.77). Bootstrap resampling (n = 1000) indicates that the proposed models are robust to minor perturbations in input data. The proposed models are based on readily available real-time information (traffic and meteorological parameters) and can thus be exploited to offer spatiotemporally resolved prediction of UFPs on freeways within similar geographic and meteorological environments. The approach developed here provides an important step toward modeling population exposure to UFP.  相似文献   

20.
Size-resolved airborne particles (9-stages) in urban Xi'an, China, during summer and winter were measured for molecular distributions and stable carbon isotopic compositions of dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls. To our best knowledge, we report for the first time the size-resolved differences in stable carbon isotopic compositions of diacids and related compounds in continental organic aerosols. High ambient concentrations of terephthalic (tPh, 379 ± 200 ng m(-3)) and glyoxylic acids (ωC(2), 235 ± 134 ng m(-3)) in Xi'an aerosols during winter compared to those in other Chinese cities suggest significant emissions from plastic waste burning and coal combustions. Most of the target compounds are enriched in the fine mode (<2.1 μm) in both seasons peaking at 0.7-2.1 μm. However, summertime concentrations of malonic (C(3)), succinic (C(4)), azelaic (C(9)), phthalic (Ph), pyruvic (Pyr), 4-oxobutanoic (ωC(4)), and 9-oxononanoic (ωC(9)) acids, and glyoxal (Gly) in the coarse mode (>2.1 μm) are comparable to and even higher than those in the fine mode (<2.1 μm). Stable carbon isotopic compositions of the major organics are higher in winter than in summer, except oxalic acid (C(2)), ωC(4), and Ph. δ(13)C of C(2) showed a clear difference in sizes during summer, with higher values in fine mode (ranging from -22.8‰ to -21.9‰) and lower values in coarse mode (-27.1‰ to -23.6‰). The lower δ(13)C of C(2) in coarse particles indicate that coarse mode of the compound originates from evaporation from fine mode and subsequent condensation/adsorption onto pre-existing coarse particles. Positive linear correlations of C(2), sulfate and ωC(2) and their δ(13)C values suggest that ωC(2) is a key intermediate, which is formed in aqueous-phase via photooxidation of precursors (e.g., Gly and Pyr), followed by a further oxidation to produce C(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号