首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
水平构造应力对巷道围岩稳定有重要的影响,针对鹤壁九矿东总回风巷在锚网索喷+u型钢支护难以保证巷道稳定的情况,通过相似材料模拟试验研究不同水平应力作用下锚注支护巷道围岩变形破坏和位移变化特征.试验表明,随着水平应力的增大,底板加强后,水平应力对顶板的作用明显,当水平载荷达到49MPa时有少量浆皮脱落,左肩部出现块状冒落,底板比较稳定,没有发生明显臌起,只出现少量横向裂隙,锚注支护结构能控制围岩变形.将试验结果在现场应用后,通过矿压观测,两帮的最大移近量为144mm,顶底板最大移近量为105mm,锚注支护提高了围岩的自承能力,能够维持巷道稳定,为类似地质条件下的巷道支护提供借鉴.  相似文献   

2.
This paper investigated the stress evolution, displacement field, local deformation and its overall distribution, and failure characteristics of the anchorage structure of surrounding rock with different rockbolt spacing through the model experiments. The influences of the pre-tightening force and spacing of rockbolt on the support strength of the anchorage structure of surrounding rock were analyzed by the simulation using FLAC3D numerical software. The support scheme of the excavated roadway was then designed, and the effectiveness of this support scheme was further verified by the displacement measurement of the roadway. The results showed that the maximum displacement between the roof and floor of the west wing track roadway in Kouzidong coal mine, China is about 42 mm, and the maximum displacement between its both sides is about 72 mm, indicating that the support scheme proposed in this study can ensure the stability and safety of the excavated roadway.  相似文献   

3.
复合巷道支护是国内外巷道支护的难题之一,而复合巷道在我国煤矿巷道中有着广泛的分布.煤巷的开挖位置一旦确定,其围岩结构状态就不再改变,岩层结构上的薄弱部位即为巷道的关键部位.巷道顶板离层破坏影响因素很多,通过对煤层直接顶、老顶的厚度以及岩体的强度等分析,确定其对顶板离层的影响程度,并结合力学分析,建立顶板离层力学模型,计算出顶板离层深度,另外还利用FLAC3D模拟软件,模拟复合巷道在不同环境下老顶与直接顶的变形量,从而得出引起顶板离层破坏的影响因素.  相似文献   

4.
基于沿空切顶成巷技术原理,以城郊煤矿深部工作面无煤柱开采为背景,综合运用力学分析﹑模拟计算和现场试验等方法,对深部切顶成巷围岩控制关键对策进行深入研究。结果显示:切顶留巷顶板在侧向形成短臂梁结构,降低了巷旁支护体所受压力,切缝范围内岩层垮落后碎胀充填采空区,使留巷顶板下沉量降低了约50%。采空区侧顶板为切顶巷道围岩变形的关键部位,需进行加强支护;深部切顶巷道实体煤帮塑性区范围大,通过煤帮锚索支护技术可将浅部锚杆承载层锚固在弹性区稳定煤体中;深部切顶成巷来压速度快、强度大,巷内单体支柱易造成冲击破断,采用高阻力液压支架巷内临时支护时可较好地抵抗深部强动压;巷旁刚性挡矸装置因无法适应深部围岩大变形而受压弯曲破坏,深部切顶巷道巷旁挡矸结构需实现一定的竖向让位卸压方可与顶底板协调变形。在研究的基础上提出恒阻锚索关键部位支护+可缩性U型钢柔性让位挡矸+巷内液压支架临时支护+实体煤帮锚索补强的深部切顶成巷联合支护技术,并进行现场工业性试验。现场监测结果表明:留巷围岩在滞后工作面约290 m时基本稳定,且稳定后各项指标满足下一工作面使用要求。  相似文献   

5.
A roadway within ultra-close multiple-seams(RUCMSs) is one of the most difficult supported coal roadways to deal with in underground coal mines. This is usually due to the unknown stress distributions, improper roadway layout, and unreasonable support parameters. In order to solve this support problem and effectively save RUCMSs from frequent and abrupt disasters(such as serious deformation of the surrounding rock, roof cave ins, and coal side collapse), a comprehensive method is adopted here which includes theoretical analysis, numerical simulation, and field monitoring. A mechanical model was constructed to determine the stress distribution in the coal pillar after two sides of a longwall panel had been mined. Based on this model, the horizontal, vertical, and tangential stress equations for the plane below the floor of the upper-left coal pillar were deduced. In addition, a typical coal mine(the Jinggonger colliery, located in Shuozhou city, Shanxi province, China) with an average distance between its 9# and 11# coal seams of less than 8.0 was chosen to conduct research on the proper layout and reasonable support required for a typical coal roadway located within coal seam 11#. Using FLAC3D(Fast Lagrangian Analysis of Continua in 3-Dimensions) numerical software, eight schemes were designed with different horizontal distances(d) between the center lines of the coal pillar and the roadway in the lower coal seam(RLCS). The simulations and detailed analysis indicate that the proper distances required are between 22.5 and 27.5 m. A total of 20 simulation schemes were used to investigate the factors influencing the support provided by the key bolts(bolt length, spacing, distance between two rows, installation angle, and pre-tightening force). The results were analyzed and used to determine reasonable values for the support parameters. Field results show that the stability and strength of the RLCS can be effectively safeguarded using a combination of researched stress distribution characteristics, proper layout of the RLCS, and correct support parameters.  相似文献   

6.
Based on engineering practices of Wuyang Coal Mine, we carried out X-ray diffract researches on No. 3 coal; and the rocks of its roof and floor by XRD meter, and simulated the interactive effect of the surrounding rock deformation by FLAC2D5.0 numerical simulation software under the condition of different tunneling method of multimine roadway in parallel. The internal structures of the surrounding rocks of 76 belt roadway were monitored by borehole observation instruments; and then, we analyzed the reason of failure and deformation of surrounding rocks of several rise entry, and proposed the technical measures for controlling interactive effect of several rise entry surrounding rock deformation at last. For the thickness seam rise roadway, two conclusions were drawn: one is that the co-deformation among roadway groups mainly reflect on that both shear failure and deformation in coal pillar among roadways have decreased the width of pillar core region and clamping action of coal pillar to roof strata, increased the actual span of roof strata, intensified the flexural failure of roof strata and prized the bed separation of roof deep rock strata. The other conclusion is that the factors controlling the interactive deformation among roadways is obvious when appropriate re-adjustment in construction sequence of the tunneling of multimine parallel roadways because the construction sequence among roadways also has great effects on deformation of the surrounding rock in roadway.  相似文献   

7.
The influence of an upper, mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined. The technical problems of roadway control are discussed based on the geological conditions existing in the Liyazhuang Mine No.2 coal seam. The stress distribution and floor failure in the lower works after mining the upper coal is studied through numerical simulations. The failure mechanism of the roof and walls of a roadway located in the lower coal seam is described. The predicted deformation and failure of the roadway for different distances between the two coal seams are used to design two ways of supporting the lower structure. One is a combined support consisting of anchors with a joist steel tent and a combined anchor truss. A field test of the design was performed to good effect. The results have significance for the design of supports for roadways located in similar conditions.  相似文献   

8.
以平煤六矿新建斜井巷道穿越采空区为工程背景,采用数值计算分析、现场监测等方法研究了采空区覆岩破断及其矿压显现特征。针对斜井穿越采空区段围岩破碎的特点,提出了金属网+全断面U型钢+反底拱连锁梁+浇筑混凝土+壁后注浆的支护方案,其通过"双壳支护"形成的内外承载结构能在很大程度上提高采空区破碎岩体的整体性。现场监测表明:斜井穿越采空区段巷道两帮的移近量为26 mm,顶底板移近量为47 mm,达到了有效控制巷道围岩变形的目的。  相似文献   

9.
深部巷道围岩变形试验与数值模拟研究   总被引:1,自引:0,他引:1  
为了研究深部软岩巷道的变形破坏特性,以淮南矿区某煤矿13-1煤回采巷道为例,在现场调查回采巷道工程概况的基础上,开展了室内深部回采巷道围岩变形特性相似模拟试验,并基于块体离散元法,建立了深部回采巷道围岩的数值模型,模拟了开挖过程中围岩的变形特性。相似模拟试验和数值模拟试验结果表明,深部巷道围岩的典型特征为:巷道底臌量两帮移近量顶板下沉量,巷道不同围岩受开挖扰动的位移影响范围不同,底板为3.5 m,顶板为2.45 m,两帮为5.5 m。  相似文献   

10.
结合陈四楼煤矿 2 4 0 1工作面机巷的具体地质条件 ,对煤巷锚杆支护机理进行了研究 .指出在顶板岩石强度较低的情况下 ,采用高强锚杆支护系统 ,并选择合理的锚固方式 ,可以有效地控制围岩变形 ,保持围岩稳定 .主要介绍了回采巷道锚杆支护的设计思路 ,采用数值模拟方法确定锚杆支护参数并在实施过程中对围岩变形进行监测 .工程实践表明 :应用锚杆支护与棚式支护相比 ,能有效改善围岩的稳定性 ,取得了良好的支护效果 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号