首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用两种纳米粒子(纳米SiO2和纳米CaCO3),通过水泥基复合材料抗裂性能试验,探讨了PVA纤维和纳米粒子单掺和复掺两种情况下PVA纤维用量、纳米材料种类和用量对水泥基复合材料抗裂性能的影响.研究结果表明,在PVA纤维增强水泥基复合材料中掺入纳米SiO2,可以显著提高水泥基复合材料抗裂性能,而且在本文试验纳米粒子掺量范围内,水泥基复合材料抗裂性能随着纳米SiO2掺量的增加不断增强;在纳米SiO2水泥基复合材料中掺入PVA纤维,可以提高水泥基复合材料的抗裂性能,当纤维体积掺量不大于1.2%时,PVA纤维体积掺量较大的纳米水泥基复合材料具有较高的抗裂性能;纳米CaCO3与纳米SiO2均能增强水泥基复合材料的抗裂性能,纳米SiO2的增强效果略优于纳米CaCO3.  相似文献   

2.
魏华  张鹏  王娟  张天航 《硅酸盐通报》2020,39(6):1709-1714
为研究纳米粒子种类和掺量以及石英砂粒径对聚乙烯醇纤维(PVA纤维)水泥基复合材料单轴拉伸性能的影响,通过单轴拉伸试验测得了试件的极限拉应变和极限拉应力,并得到了试件应力-应变关系曲线.PVA纤维的体积掺量为0.9%,选择纳米SiO2质量掺量和石英砂粒径各四种.结果 表明,纳米SiO2的掺加对PVA纤维水泥基复合材料抗拉伸性能有一定的提高,随着纳米SiO2掺量从0%增大到2.5%,试件极限拉应变和极限拉应力整体上呈逐渐增大趋势.相对于纳米CaCO3,纳米SiO2对PVA纤维水泥基复合材料抗拉伸性能的增强效果更明显.石英砂的粒径对PVA纤维水泥基复合材料抗拉性能影响较大,石英砂的粒径越小,PVA纤维水泥基复合材料的极限拉应变和极限拉应力越低.  相似文献   

3.
通过设计10组配合比研究了不同PVA纤维掺量、水胶比和粉煤灰掺量对工程水泥基复合材料(ECC)强度(压缩、拉伸和弯曲)和韧性性能的影响,并进行了材料组成与性能关系分析.其中使用四点弯曲薄板来研究ECC的弯曲韧性,使用ASTM-C1018和DBV中提出的韧性指标来量化ECC的韧性特征.结果表明:ECC的抗压强度主要取决于粉煤灰置换率和水胶比,而抗拉强度和弯曲强度则主要依赖于PVA纤维体积掺量,且纤维掺量控制ECC的应变硬化和软化行为.虽然PVA纤维掺量的提高可以略微提高ECC的弹性模量,但主要还是受粉煤灰掺量控制.  相似文献   

4.
为揭示混掺纤维对应变硬化水泥基复合材料力学性能和变形行为的影响规律,研究了玄武岩–聚乙烯醇(PVA)纤维应变硬化水泥基复合材料的抗拉、抗压性能及压应变演化特征.设计了纤维掺量为材料体积分数的2%,玄武岩纤维和PVA纤维掺量比分别为3:1、1:1和1:3,同时控制粉煤灰与水泥掺量的比值(FA/C)分别为1.2、1.5和2...  相似文献   

5.
制备高韧应变硬化水泥基复合材料(SHCC)通常用经表面涂油处理的聚乙烯醇(PVA)纤维.本文通过利用无表面修饰的PVA纤维及高掺粉煤灰,制得高韧SHCC.通过控制粉煤灰掺量,利用减水剂调节水胶比,实现对基体强度的控制,得到有利于制备SHCC的基体.弯曲和直接拉伸试验结果表明,由无表面修饰PVA纤维增强的水泥基复合材料呈现多缝开裂和应变硬化特征,具有优良韧度和延展性.纤维增韧作用主要体现在挠度硬化阶段,但对于强度较低的SHCC而言,挠度软化阶段中也呈现较明显的纤维增韧作用.高掺粉煤灰时,无表面修饰PVA纤维增强的SHCC所呈现出的直接拉伸极限应变达3%以上,与经表面涂油PVA纤维增强的SHCC相当.  相似文献   

6.
司文静  封喜波 《硅酸盐通报》2018,37(7):2214-2217
通过抗折强度试验与非稳态氯离子快速迁移方法对11组PVA-ECC试件进行研究,分析粉煤灰掺量及纤维掺量对PVA纤维水泥基复合材料抗折强度与氯离子渗透性能的影响.结果表明:试块抗折强度随粉煤灰掺量的增加而降低,随纤维掺量的增加而提高.当粉煤灰掺量为45%~50%、纤维掺量在1.5%~1.75%之间时,材料氯离子扩散系数最小.  相似文献   

7.
通过对不同纤维掺量的PVA-ECC试件进行抗压强度和抗折强度试验以及干缩试验,探究PVA纤维对水泥基复合材料基本力学性能和干缩性能的影响。结果表明:PVA纤维的掺入,可以提高水泥基复合材料的抗折强度,在0~3.6kg/m~3的掺量区间内,PVA纤维掺量越大,P水泥基复合的抗折强度越大;PVA纤维的掺入可以提高水泥基材料的抗压强度,但是不显著;PVA纤维掺量1.8kg/m~3时,其对水泥基材料的干缩有抑制作用。  相似文献   

8.
为研究PVA纤维掺量、纳米粒子掺量和种类对水泥基复合材料抗渗性能的影响,通过抗渗性试验测得了各组抗渗试件的渗水高度。纳米粒子的质量掺量分别为0.5%,1%,1.5%,2%,2.5%,PVA纤维的体积掺量分别为0.3%,0.6%,0.9%,1.2%,采用的纳米粒子包括纳米Si O2和纳米Ca CO3。研究结果表明,纳米Si O2可以显著提高PVA纤维增强水泥基复合材料抗渗性能,而且在纳米Si O2掺量低于2.5%的范围内,抗渗性能随着纳米Si O2掺量的增加不断增强;PVA纤维可明显提高纳米水泥基复合材料的抗渗性能,当纤维体积掺量不大于1.2%时,纤维体积掺量较大的纳米水泥基复合材料具有较高的抗渗性能;纳米Ca CO3与纳米Si O2均能提高水泥基复合材料的抗渗性能,纳米Si O2的提高效果略优于纳米Ca CO3。  相似文献   

9.
研究三种长径比及三种不同体积掺量的PVA纤维对水泥基复合材料流动性能和力学性能的影响。结果表明:随纤维体积掺量的增加,各组胶砂拌合物的调桌流动度数值均呈现出逐渐下降的变化趋势,在相同体积掺量下,直径31μm、长度6mm的纤维对拌合物流动性影响更显著一些;为使得胶砂拌合物具有较好的工作性,可振捣成型密实,将PVA纤维体积掺量控制在0.4%以内作为适宜的纤维体积掺量范围;随龄期的增长,三种规格纤维对水泥基复合材料的抗折强度、抗压强度均随纤维体积掺量的增加而增加,且PVA纤维对水泥基复合材料抗折强度的影响较其抗压强度显著,直径40μm、长度12mm的纤维较其他两种规格的纤维不仅能显著改善水泥基复合材料的早期强度,且对其后期强度的发展也很有利。  相似文献   

10.
利用正交试验设计原理,对9组不同配合比的高韧性水泥基复合材料进行了抗压试验,研究了粉煤灰掺量、水胶比、砂胶比和减水剂掺量这四种因素对高韧性水泥基复合材料抗压强度的影响,并定量分析了各个因素影响的显著性.试验结果表明:各因素对抗压强度影响的主次顺序为水胶比>粉煤灰掺量>减水剂掺量>砂胶比,其中水胶比对强度的影响远大于其他因素,而砂胶比的影响并不明显;抗压强度随水胶比的增大而减小,随砂胶比的增大而缓慢增加;当粉煤灰掺量或减水剂掺量增大时,抗压强度先增大后减小,粉煤灰和减水剂存在最佳掺量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号