首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
采用序批式反应器(SBR)处理模拟氨氮废水,通过控制溶解氧浓度在中温下实现了短程硝化,并在较低温度下维持稳定的短程硝化。以全程硝化污泥为种泥,当溶解氧浓度从3.5~4.5 mg/L降低至0.8~1.3 mg/L时,可迅速实现NO 2--N的积累,持续运行中NO 2--N的积累率稳定在80%以上。利用随季节变化温度逐渐降低的特点,在中温下实现NO2--N的积累和氨氧化菌(AOB)的优势生长,然后随着气温的逐渐下降使AOB逐渐适应低温环境,当水温为13℃时NO 2--N的比积累速率为0.119 g/(gMLVSS.d)。单周期运行情况表明,游离氨(FA)对亚硝酸盐氧化菌(NOB)的抑制作用主要在反应前期,而游离亚硝酸(FNA)、pH值的抑制作用主要在后期。  相似文献   

2.
环境温度下短程硝化反硝化试验研究   总被引:4,自引:1,他引:4  
在环境温度(20~30 ℃)下,通过控制反应体系的曝气量和pH,培养了短程硝化反硝化污泥,成功实现了SBR短程硝化反硝化.试验结果表明,在高pH条件下,有利于NH3-N的氧化,同时NO 2-N的累积率大大增加;降低曝气量可提高NO-2-N在体系中的累积率,控制系统的DO为0.4~0.7 mg/L(曝气量为0.1 L/min)、pH=8.3,在进水NH3-N为50 mg/L时,NO-3-N累积率>70%;高进水NH3-N浓度对硝酸菌有明显的抑制作用,而对亚硝酸菌的影响不大.进水NH3-N为120 mg/L时,NO-2-N累积率可达80%.  相似文献   

3.
为了考察短程硝化反硝化的影响因素,对短程硝化反硝化快速启动和稳定运行的影响因素,采用实时控制手段研究.结果表明:通过DO和pH联合实时控制,低DO条件下可以实现短程硝化反硝化快速启动.启动成功的短程硝化污泥,过度曝气对NO2-N积累影响较大.合理控制曝气时间,应用实时控制策略,控制NH4+-N刚刚氧化完成时停止曝气,可保证NH4+-N完全氧化,防止NO2-N进一步氧化.实时控制可实现短程硝化,而且可以维持短程硝化稳定运行.  相似文献   

4.
采用亲水性玻璃态单体,应用辐射技术制备生物相容性高分子共聚物载体,使用固定化细胞增殖技术对氨氧化菌进行固定化,并以流化床为生物反应器,采用SBR运行方式对人工配水进行短程硝化的启动研究。结果表明:当进水氨氮浓度为100、75、50和25mg/L时,对氨氮的的去除率分别为98.6%、99.1%、98.8%和99.8%,亚硝化率分别为98.6%、94.5%、95.2%和94.7%;对氨氮的去除速率由开始时的10.6mg/(L·d)提高到25.7mg/(L·d),耗氧速率(OUR)则由0.37mg/(L·h)提高到1.12mg/(L·h)。可见,该方法具有启动速度快、亚硝化程度高、容易控制等优点。  相似文献   

5.
固定化氨氧化菌短程硝化的启动研究   总被引:1,自引:0,他引:1  
采用亲水性玻璃态单体,应用辐射技术制备生物相容性高分子共聚物载体,使用固定化细胞增殖技术对氨氧化菌进行固定化,并以流化床为生物反应器,采用SBR运行方式对人工配水进行短程硝化的启动研究.结果表明:当进水氨氮浓度为100、75、50和25mg/L时,对氨氮的的去除率分别为98.6%、99.1%、98.8%和99.8% ,亚硝化率分别为 98.6%、94,5%、95.2%和94.7%:对氨氮的去除速率由开始时的10.6mg/(L·d)提高到25.7mg/(L·d),耗氧速率(OUR)则由0.37mg/(L·d)提高到1.12mg/(L·d).可见,该方法具有启动速度快、亚硝化程度高、容易控制等优点.  相似文献   

6.
采用微孔曝气氧化沟中试装置处理实际污水处理厂沉砂池出水,研究了中试装置在低温条件下实现启动的可行性和可靠性。结果表明,中试装置抗冲击负荷能力较强,在低温条件下(13~18℃),控制好氧区DO浓度为0. 5~1. 0 mg/L,系统运行稳定;试验后期,中试装置出水指标除TP外其余均满足《城镇污水处理厂污染物排放标准》一级A标准要求。因此,在低温条件下中试装置可通过降低系统曝气量实现启动。分析了除磷效果不佳的原因,主要与排泥不规律、接种污泥除磷能力较差、回流污泥中含有硝态氮等有关。  相似文献   

7.
为匹配厌氧氨氧化工艺,本试验探索了短程硝化反应器的启动情况。试验结果表明,在保证温度为(35±1)℃,溶解氧阶段性调整,p H值为7.5~8.5,NH+4-N浓度为30~40 mg·L~(-1)的条件下~([1]),经过50天的运行调试,间歇曝气与连续曝气两组装置启动成功:NH_4L~+-N去除率分别达到92.90%和94.24%;NO_2~--N的积累率分别达到95.42%与92.25%,出水浓度分别可以达到2.63 mg·L~(-1)和2.06mg·L~(-1),并且在恢复到室温条件下依然能稳定运行。结合NH+-4-N去除率和NO_2~--N的积累率来看,间歇曝气要优于连续曝气。  相似文献   

8.
短程硝化/厌氧氨氧化一步法自养脱氮中试研究   总被引:3,自引:0,他引:3  
一步法自养脱氮工艺在高氨氮废水处理中具有运行能耗低、不需外加碳源等优点。利用总容积为50 m3的SBR反应器处理高氨氮废水,成功实现了短程硝化/厌氧氨氧化一步法自养脱氮。反应器对不同氨氮浓度(350~4 300 mg/L)的废水均表现出良好的处理效果,对氨氮与总氮的平均去除率分别达到95%和90%以上。同时,还研究了反应器运行的主要影响因素、污泥粒径分布及微生物群落结构。结果表明,系统内形成了红色的厌氧氨氧化颗粒,且颗粒的比例随运行逐渐增加;而维持合理的溶解氧和氨氮浓度是实现高负荷脱氮的关键因素。  相似文献   

9.
中试规模的城市污水常、低温短程硝化反硝化   总被引:4,自引:2,他引:4  
短程硝化反硝化技术对于节省能源和碳源具有重要意义。基于前期的研究基础,在北京北小河城市污水处理厂建立了有效容积为54m^3的SBR中试系统,在国内外首次采用实际城市污水,在温度为11.8-25℃和通常溶解氧条件下,实现了稳定的常温、低温短程硝化反硝化。系统在保证总氮去除率约为98.2%的基础上,亚硝化率基本保持在95%以上。该项研究成果为低氨氮污水的短程硝化反硝化技术由实验室研究走向工程化奠定了基础。  相似文献   

10.
在温度为30℃时,通过控制生物倍增反应器中溶解氧为0.3~0.5mg,/L、pH值为7.5~8.5,实现了连续流短程同步硝化反硝化的启动,并研究了低温和溶解氧对连续流短程同步硝化反硝化的影响.结果表明:采用阶段降温的方法,经过42天的培养,连续流短程同步硝化反硝化在10℃稳定运行;相同溶解氧下,温度在15~22℃变化时...  相似文献   

11.
采用微孔曝气变速氧化沟中试系统处理城市污水,研究其对氮、磷和有机物的去除效果。结果表明,系统具有良好的脱氮除磷及降解有机物的能力,对COD、氨氮、TN和TP的平均去除率分别为92%、96%、81%和94%。系统中存在明显的反硝化除磷现象,活性污泥中的DPBs占PAOs的比例为61%。针对试验期间由于回流系统故障引发的污泥浓度低、硝化细菌数量大幅减少、出水氨氮浓度高的现象,采取降低进水量、加大曝气量、减少排泥量等措施恢复污泥的硝化能力,调试100 d后,污泥硝化性能完全恢复。  相似文献   

12.
低DO下的短程硝化及同步硝化反硝化   总被引:30,自引:1,他引:30  
研究了低溶解氧下序批式反应器(SBR)的短程硝化特征和控制条件以及碳源浓度、投加方式对同步脱氮效率的影响。试验结果表明,保持高、低溶解氧交替的环境是实现短程硝化的关键;当进水NH4^ -N为300mg/L、COD为400~600mg/L时,采用半连续碳源投加方式可保证总同步脱氮效率达到80%。  相似文献   

13.
针对焚烧垃圾渗滤液水质的多变性,为了在C/N值较低的情况依旧能够有效脱除总氮,提出了以厌氧/好氧/兼氧/厌氧为基础的大比例回流的短程硝化反硝化工艺,对焚烧垃圾渗滤液进行预处理。通过中试研究了该工艺的可行性,并通过监测水质及污泥浓度的沿程变化规律,分析了对污染物的去除机理。结果表明,通过控制各反应池的DO浓度及出水的回流比,实现亚硝态氮的积累和稳定的反硝化是可行的,且系统pH值能够稳定在7~8.5之间。系统最佳的HRT为2.9 d,此时出水COD、氨氮及总氮分别为778.1、15和136.9 mg/L,去除率分别为70.3%、96.6%和69.6%,亚硝化率为92.9%。污染物的去除主要发生在第一级厌氧池中,且以吸附去除为主;微生物的同化作用与增殖主要发生在兼氧池中。污泥回流确保了第一级厌氧池具有较高的污泥量与较好的处理效果。  相似文献   

14.
以低C/N值城市生活污水作为研究对象,以污水厂二沉池回流污泥作为接种污泥,采用SBR反应器,分析短程硝化快速启动的方法及其主要控制条件。试验结果表明,对接种污泥持续曝气(DO约为2. 5 mg/L) 13 d后,在SBR反应器采用连续恒量供氧方式、水温为(30±1)℃、p H值为7. 8~8. 2的条件下,反应器连续运行35 d,成功实现了低C/N值城市生活污水的高效短程硝化,亚硝态氮积累率达到94%。对培养过程中活性污泥的菌种变化跟踪检测表明,SBR反应器稳定运行后,AOB/NOB的菌种比例达到38. 1∶1。对曝气量进行优化后发现,控制曝气量为1. 5L_气/(L_水·h),历时4 h即可实现短程硝化最大化积累。  相似文献   

15.
为了实现快速有效的短程硝化控制和高硝化速率,采用A2O工艺的活性污泥,利用CSTR反应器,分别控制游离氨和溶解氧浓度,对硝化活性污泥快速实现短程硝化及稳定高效运行进行研究。在低游离氨浓度控制体系中,对硝态氮的产生不具有很好的控制作用,短程硝化难以启动;在高游离氨浓度控制体系中,实现了5 d快速启动短程硝化,亚硝态氮积累率稳定在90%以上;提高短程硝化过程的溶解氧浓度,硝化性能从26 mg/(L·h)增长到54 mg/(L·h),亚硝态氮积累率仍稳定维持在90%以上,达到高效稳定运行的目的;另外,从AOB生长动力学分析可知,提高游离氨浓度对提高AOB生长速率具有非常重要的意义。因此,通过控制高游离氨浓度、提高溶解氧可以快速实现短程硝化并稳定高效运行。  相似文献   

16.
一、受纳水域概况 长沙市第二污水厂用于处理长沙市“新建区”的城市混合污水,该区位于长沙市东郊,汇水面积10.17km~2,人口21.24万。区内日排生产、生活污水约13万m~3,其中工业废水约占  相似文献   

17.
常温下部分亚硝化的启动中试研究   总被引:3,自引:0,他引:3  
在常温(16.4 ~25.5℃)、限氧(DO =0.20 ~0.80 mg/L)条件下,以A/O除磷工艺出水为原水,在中试规模的反应器中采用SBR及高低氨氮(平均值分别为303.9和82.4 mg/L)交替进水方式,经过24个周期的连续运行成功实现了短程硝化,氨氮氧化率超过50%,亚硝化率超过90%.高FA( 11.36 mg/L)、FNA(0.033 mg/L)及低DO(<0.80 mg/L)的联合抑制是实现亚硝酸盐氧化茵(NOB)被淘汰的关键因子,而限时曝气策略是SBR短程硝化得以稳定维持的重要因素.在低氨氮、连续流下控制HRT为7~9h、反应器各格室的曝气量为2~5 L/min、DO为0.10~0.60 mg/L,可使氨氮氧化率维持在55%左右,亚硝化率在95%以上,出水NO-2 -N/NH+4 -N平均值为1.32,为后续厌氧氨氧化(ANAMMOX)反应器提供了适宜的进水水质.  相似文献   

18.
低C/N值下短程硝化反应器的启动及影响因素   总被引:2,自引:0,他引:2  
采用CSTR反应器对低C/N值模拟废水短程硝化的启动过程及影响因素进行了研究。结果表明,在进水NH4+-N和COD分别为210和300 mg/L的条件下,控制进水pH值为7.8~8.2、温度为(30±0.5)℃、DO为1.0~1.5 mg/L、HRT=1.25 d,2个月即可成功启动短程硝化,亚硝态氮积累率可达99%以上,对氨氮的去除率稳定在95%以上。DO、污泥龄、氨氮负荷及pH是影响短程硝化稳定运行的主要因素。  相似文献   

19.
五沟式氧化沟的设计及运行   总被引:1,自引:0,他引:1  
从设计和运行两个方面对南通市污水处理厂的五沟式氧化沟工艺进行了总结。投产以来的运行实践表明,该工艺的容积、设备利用率高,并可实现全时反硝化;同时也存在着需进一步提高除磷效率、各沟中污泥浓度分布不均等问题,有待进一步完善。  相似文献   

20.
构建以厌氧/好氧/缺氧/快速曝气单元组成的短程硝化同步反硝化除磷工艺,并在常温、低氧条件下用于处理实际城市污水。结果表明,设定水力停留时间(HRT)为9 h,污泥龄为20~25 d,污泥浓度(MLSS)为2 000~4 000 mg/L,且控制好氧1池的溶解氧(DO)浓度为1. 5~2mg/L,好氧2池的DO为0. 5~1 mg/L,并投加氢氧化钠溶液调控好氧池的pH值在8. 5以上,可以实现短程硝化反硝化的快速启动,且出现了反硝化除磷现象,出水水质可达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级B标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号