首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对西安市某污水处理厂A~2/O工艺出现的污泥膨胀和上浮现象,利用荧光原位杂交技术(FISH)对致因微生物进行了鉴定,并分析了其对脱氮除磷的影响。结果表明,引起污泥膨胀与上浮的微生物主要为微丝菌(简称M.P),混合液SV最高可达96%,相应的SVI为239 m L/g,导致污泥沉淀困难,出水SS增大,缺氧池和好氧池前端出现大量浮泥。随着温度的提高,微丝菌在污泥中的含量逐渐降低,污泥的SV逐渐减小,缺氧池表面浮泥逐渐消失。混合液和浮泥的最大比释磷速率分别为14、9.8 mg PO_4~(3-)-P/(g VSS·h),比吸磷速率分别为4.5、3.7 mg PO_4~(3-)-P/(g VSS·h);吸收单位乙酸的释磷量分别为0.29和0.27 g PO_4~(3-)-P/g HAc;在厌氧段微丝菌与聚磷菌竞争有机物,但不具有生物除磷的功能。此外,反硝化速率测定表明微丝菌可利用硝酸盐进行呼吸,对脱氮具有强化作用。  相似文献   

2.
利用厨余发酵液作为外碳源以改善A/O-MBR的脱氮除磷性能。结果表明:投加发酵液后反应器的脱氮除磷效果明显提高,出水NH+4-N、TN和PO3-4-P的平均浓度分别为0.72、7.25、1.78 mg/L,去除率分别达到96%、65%和85%以上。此外,厌氧污泥中的TP含量明显低于好氧污泥,而上清液中的PO3-4-P浓度高于好氧池,说明聚磷菌在厌氧条件下释磷,而在好氧条件下吸磷。释磷/吸磷批式试验进一步证实了在厌氧条件下主要进行释磷和反硝化过程,释磷速率达到5.66 mg/(g MLVSS·h),而在好氧条件下主要进行吸磷和硝化过程,吸磷速率和硝化速率分别为4.79、2.37 mg/(g MLVSS·h),较高的微生物活性有利于对污染物的去除。  相似文献   

3.
亚硝酸盐对聚磷菌厌氧代谢的影响   总被引:1,自引:0,他引:1  
以2种强化生物除磷(EBPR)系统中的活性污泥为研究对象,考察亚硝酸盐对聚磷菌厌氧代谢的影响,结果表明:不同EBPR系统中的聚磷菌对于亚硝酸盐的耐受能力不同。人工配水富集聚磷菌的活性污泥,当亚硝态氮浓度超过10 mg/L时,聚磷菌吸收VFA受到抑制, PHA的合成减少,磷酸盐的释放增加;处理生活污水的SBR短程脱氮除磷活性污泥,亚硝酸盐的浓度高达30 mg/L时,未对聚磷菌的厌氧代谢造成抑制,但引起异养反硝化菌与聚磷菌竞争VFA,导致PHA合成量和释磷量的减少。富集聚磷菌的活性污泥投加亚硝酸盐后P/VFA  相似文献   

4.
以乙酸钠为唯一碳源,分别在污泥浓度为2 000和3 000 mg/L时,研究了乙酸钠投配量对厌氧/好氧SBR生物除磷系统厌氧段释磷过程的影响。结果表明:当乙酸钠负荷约为0.15gCOD/gVSS时,厌氧段聚磷菌释磷量相对最大,当乙酸钠负荷小于或大于此值时释磷量都相对较小;并且当乙酸钠负荷<0.24 gCOD/gVSS时,释磷时间随着碳源负荷的增加而越来越长,超过这个值之后,系统中周期内没有明显的厌氧释磷和好氧吸磷现象,其原因归结为乙酸钠浓度增大引起pH值过高,造成厌氧段聚磷菌不释磷,从而导致后续好氧吸磷过程遭到破坏。  相似文献   

5.
以西安市采用不同工艺的三个污水处理厂为研究对象,对其除磷效果进行测定,利用荧光原位杂交技术(FISH)对污泥中的聚磷菌、聚糖菌和总细菌的数量和分布特征进行分析。结果表明,厌氧释磷速率为2.81~11.03 mgP/(gVSS·h),厌氧过程中吸收单位质量乙酸的释磷量为0.098~0.345 mg。好氧吸磷速率为3.03~13.58 mgP/(gVSS·h),缺氧吸磷速率为1.93~4.48mgP/(gVSS·h),缺氧、好氧吸磷速率的比值为33.02%~71.91%。污泥中聚磷菌占总细菌的比例为0.43%~5.34%,聚糖菌的比例为0.16%~10.08%。聚磷菌和聚糖菌在活性污泥絮体中的分布状态存在明显差异,聚磷菌主要以菌胶团形式存在,而聚糖菌则均匀分布于絮体中。  相似文献   

6.
反硝化聚磷菌的脱氮除磷特性研究   总被引:15,自引:0,他引:15  
为研究反硝化聚磷菌的脱氮除磷特性,对接触氧化、SBR、A/O、A2/O和双污泥系统的活性污泥做了好氧吸磷和缺氧吸磷的静态烧杯试验,单独考察了双污泥系统的污泥在厌氧条件下以不同碳源为底物和在缺氧条件下以NO3-为电子受体的释/吸磷特性。结果表明,SBR、A2/O、双污泥系统的污泥在好氧和缺氧条件下均有很好的吸磷效果,其中双污泥系统污泥的缺氧吸磷速率和反硝化速率最大。而且在缺氧条件下,当NO3-充足时其浓度对吸磷效果影响不大,吸磷速率为7.52 mgPO43--P/(gMLVSS.h),反硝化速率为9.74 mgNOx--N/(gMLVSS.h)。在厌氧条件下,以蔗糖为碳源的释磷量最小,释磷速率亦最低,而以CH3COONa为碳源的释磷量和释磷速率均最大,释磷速率为4.2 mgPO43--P/(gMLVSS.h)。  相似文献   

7.
进水磷碳比对聚磷菌与聚糖菌竞争生长的影响   总被引:3,自引:0,他引:3  
以葡萄糖和乙酸盐为混合碳源,考察了进水磷碳比对SBR生物除磷系统中聚磷菌和聚糖菌竞争生长的影响.结果表明,进水磷碳比较高(10:100)时,会在运行初期导致系统出水磷浓度较高,但反应器运行40d后,出水磷浓度可降至1 mg/L以下.当进水磷碳比为2.5:100时,单位污泥释磷量、单位污泥吸磷量、污泥含磷量和污泥含糖量分别为7.5 mg/g、8.3 mg/g、2.3%和9.5%;当进水磷碳比为10:100时,上述各指标值分别为12.1 mg/g、14.7 mg/g、6.7%和7.0%.在高进水磷碳比条件下,单位污泥释磷量、单位污泥吸磷量和污泥含磷量均较高,污泥含糖量则较低,故高进水磷碳比对于聚磷菌的生长更为有利.  相似文献   

8.
富磷剩余污泥重力浓缩过程中各参数的变化特征   总被引:1,自引:0,他引:1  
以A2/O系统的富磷剩余污泥为研究对象,考察了污泥浓缩过程中上清液各参数的变化特征,以及浓缩前、后污泥中阳离子及磷酸盐分布的变化.结果表明:随着重力浓缩的进行,污泥中的磷酸盐不断释放,到浓缩结束时释磷量可达5.51 mgP/g污泥,平均释磷速率为0.189 mgP/(g污泥·h);在释放的磷酸盐中,非磷灰石无机磷占60%左右,磷灰石无机磷约占40%,有机磷的释放量极为有限;在释磷过程中伴随着K+、Mg2+的释放;污泥浓缩前、后其性质并没有发生变化,聚磷菌仍然具有一定的好氧吸磷/厌氧释磷特性.  相似文献   

9.
颗粒污泥的稳定性是影响其在污水处理中广泛应用的重要因素.在SBR反应器中,采用成熟的生物除磷颗粒污泥,探讨了丝状菌膨胀对其除磷能力和稳定性的影响.经过396d的运行,结果表明,丝状菌的存在对颗粒污泥的形成和稳定起重要作用,但当丝状菌过度生长时,反应器的除磷率和污泥最大释磷速率分别降低到60%和26.67 mgP/(gMLVSS·h)以下,出水SS和SVI分别提高到100 mg/L和50 mL/g以上.采用延长沉淀时间、提高搅拌速度以及投加无膨胀的生物除磷颗粒污泥三种策略均可以恢复系统的功能,所需恢复时间分别为53、26和20 d.  相似文献   

10.
腐殖土改善活性污泥沉降与脱水性能的研究   总被引:4,自引:0,他引:4  
考察了腐殖土对活性污泥沉降和脱水性能的改善效果.结果表明,投加腐殖土可显著改善污泥的沉降和脱水性能,随着腐殖土投量的增加,活性污泥的初沉速度、压缩比、泥饼含固率均明显提高,污泥容积指数(SVI)、污泥比阻(SRF)及毛细吸水时间(CST)均明显降低;当活性污泥浓度为2 300 mg/L、腐殖土的投加量为5.0 g/L时,污泥的初沉速度由原来的1.72 m/h增至3.01m/h,压缩比由原来的2.86增至7.14,SVI由原来的152 mL/g降至61 mL/g;当污泥浓度为7 300mg/L、腐殖土的投加量为5.0 g/L时,污泥比阻由原来的1.33×1012m/kg降至5.7×1011m/kg,CST由原来的20.3 s降至15.7 s,泥饼含固率由原来的13.4%增至33.0%.  相似文献   

11.
针对污水厂活性污泥易于发生丝状菌污泥膨胀问题,以西安市第二污水处理厂活性污泥为研究对象,在次氯酸钠投加量为15 mg/L的条件下,探索高浓度消毒剂对活性污泥中微生物的杀灭效果以及对胞外聚合物(EPS)含量和不同类型微生物活性的影响。结果表明,高浓度次氯酸钠能有效杀灭丝状菌,从而控制污泥的丝状膨胀现象,但在杀灭丝状菌的同时也会影响菌胶团絮体内的部分微生物,且对不同微生物的杀灭效果不同,亚硝酸盐氧化菌(NOB)是最易被杀灭的类型。当次氯酸钠投加量为15 mg/L时,反应3 h后污泥胞外聚合物总含量降低了15. 48%,硝化活性丧失殆尽且再未恢复,反硝化活性下降明显;恢复7 d后,絮体内部微生物可以得到有效恢复,而丝状菌大多依然处于死亡状态,EPS总含量继续下降。总之,高浓度消毒剂作用于活性污泥后,可以达到控制丝状菌的目的,但是污泥的硝化和反硝化活性也受到了影响。  相似文献   

12.
在缺氧条件下向改良A2/O工艺活性污泥混合液中投加乙酸钠,考察外加碳源对改良A2/O工艺反硝化除磷的影响。结果表明,随着反应时间的延长,反硝化速率逐渐降低,由此反硝化过程可大致分为3个阶段,其中第1阶段的反硝化速率最大;释磷和反硝化同时发生,且释磷和第1阶段的反硝化利用同一类碳源;初始NO3--N浓度和外加碳源投量对释磷速率无明显影响,试验条件下释磷速率为4.0mgPO34--P/(gVSS.h)左右;释磷结束后,若仍然存在NO3--N,则会发生反硝化吸磷过程。投加碳源可提高反硝化脱氮效果,但同时会对反硝化吸磷带来不利影响,因此在实际运行时要合理控制碳源投量,以恰好满足脱氮要求为最佳。  相似文献   

13.
以污水处理厂氧化沟污泥为泥种,采用进水低碳高磷、两阶段的运行方式进行反硝化聚磷污泥的培养,约100 d成功驯化培养出反硝化聚磷污泥。第1阶段以厌氧/好氧的运行方式驯化好氧聚磷污泥,运行约40 d,最大释磷量、最大聚磷量和最大除磷量分别可达到77.2、89.4、25.0 mg/L,表现出较强的聚磷能力;第2阶段采用厌氧/缺氧/好氧的运行方式驯化反硝化聚磷污泥,运行60 d,缺氧聚磷量占总聚磷量的百分比呈上升趋势。硝化污泥经过100 d的驯化可去除约50 mg/L的氨氮,硝化率基本稳定在98.5%以上。硝化速率本符合零级动力学方程,比硝化速率常数为0002 4 h-1;好氧聚磷速率和缺氧聚磷速率基本符合一级动力学方程,速率常数分别是0.377、0740 g/(L·h-1)。利用驯化培养成功的反硝化聚磷污泥和硝化污泥进行了A 2N-SBR试验,结果表明:在进水COD、氨氮和磷分别为188.0、54.8、725 mg/L时,去除率分别为93.5%、76.7%和941%,驯化培养的双污泥具有良好的脱氮除磷效果。  相似文献   

14.
污泥减量化工艺:HA-A/A-MCO的除磷性能及磷回收   总被引:1,自引:2,他引:1  
针对污泥减量技术中对氮、磷去除能力低的问题,开发了一种具有强化脱氮除磷功能、污泥减量化的HA-A/A-MCO工艺,其通过回流释磷污泥的水解酸化来刺激磷的厌氧释放并辅以外排富磷污水进行化学固定的方式除磷.研究发现:当进入水解酸化池的厌氧释磷污泥量为进水量的2%时,水解产生的VFA导致释磷量达57 mg/L,聚磷菌的生长得到促进而聚糖菌则受到抑制;当控制侧流除磷液量为进水量的13%、化学除磷池出水磷为5 mg/L时,系统处理出水TP<0.5 mg/L;提高厌氧释磷浓度并控制化学除磷池的出水磷浓度为5 mg/L,可以提高化学药剂利用率、减少药剂用量并提高化学污泥的含磷量,HA-A/A-MCO系统产生的化学污泥含磷率高达18%,接近纯含磷化合物的含磷率,可直接用作生产磷肥的原料.  相似文献   

15.
城市污水处理厂污泥浓缩池上清液和脱水机滤液重新回流入污水处理系统会增加系统的磷负荷。针对污水处理厂剩余污泥浓缩过程中浓缩时间、投加聚合氯化铝(PAC)以及曝气对磷释放的影响进行了研究。结果表明,污泥浓缩池中的剩余污泥静置4 h后,释磷速率显著加快。在污泥浓缩池投加0.1 g/g干泥的PAC不仅将快速释磷时间延迟至8 h,还可以显著降低上清液中的磷酸盐浓度。对污泥浓缩池曝气30 min且溶解氧达到3 mg/L以上时,上清液中磷酸盐浓度降低了77.7%。通过合理控制剩余污泥在浓缩池中的停留时间、投加PAC以及曝气等,可以降低浓缩池上清液磷浓度,有效提高系统的除磷效果。  相似文献   

16.
HA-A/A-MCO工艺具有强化脱氮除磷和污泥减量功能,当进水磷浓度为8~12mg/L时,出水磷浓度均值仅为0.44 mg/L,出水水质满足GB 18918—2002的一级A标准。聚磷菌有效释磷1 mg即拥有2.8 mg的吸磷能力,具有很强的超量吸磷潜能,但系统采用外排厌氧富磷污水除磷的方式,磷已先于好氧吸收过程被去除,降低了对聚磷菌超量吸磷能力的要求。采用细菌纯培养法从系统中分离出5株具有典型吸放磷特性的聚磷菌,对其进行16S rDNA扩增和测序比对分析发现,Acinetobacter sp.和Lampropedia sp.等菌种在厌氧释磷过程中占主要优势;Devosia sp.和Bdellovibrio sp.等菌种集中出现在好氧池,是系统好氧吸磷过程的优势菌群;在缺氧池能检测到尚未被培养研究的Uncultured Bacterium等菌群的存在。  相似文献   

17.
以絮状生物除磷污泥为参照,对生物除磷颗粒污泥的物理、化学、生物特性和除磷特性进行系统研究。结果表明:生物除磷颗粒污泥呈淡黄色,外观呈球形或椭球形,边界光滑清晰,沉降速度在15~20 m/h左右,含水率为95.94%,相对密度为1.193,粒径在0.3~0.5 mm之间,SVI值在50 mL/g以下,颗粒污泥最大比释磷速率和最大比吸磷速率分别为104.43、44.72 mgP/(gVSS.h),污泥中总磷含量(TP/SS值)为7.4%;絮状生物除磷污泥呈淡黄色,结构紧密,污泥含水率为97.65%,相对密度为1.040,最大比释磷速率和最大比吸磷速率分别为104.82、42.43 mgP/(gVSS.h),TP/SS值达到9.5%。生物除磷颗粒污泥具有较强的除磷能力和优良的物理、化学、生物性能。  相似文献   

18.
污泥原位减量工艺为解决目前污水处理厂所面临的进水碳源不足、污泥产量巨大等问题提供了新思路。污泥微生物细胞的溶解和胞内物质的释放与利用成为其关键环节。然而常规污泥破解技术很难达到预期效果,为此将臭氧和水解酸化技术耦合,利用间歇试验重点考察了污泥经臭氧/水解酸化后回流对有机物降解、硝化、反硝化、厌氧释磷和好氧吸磷过程的影响。结果发现,剩余污泥溶解液可以作为反硝化碳源,有44.1%的COD被反硝化菌快速利用,平均比脱氮速率介于乙酸钠和甲醇之间;污泥溶解液也能被聚磷菌利用实现厌氧释磷,最大比释磷速率是乙酸钠的72.2%;污泥溶解液回流对有机物降解、硝化以及好氧吸磷过程均无影响。但由于曝气结束时仍有COD残留,因此需要控制其回流比例,以免难降解物质积累。  相似文献   

19.
通过对实验室SBR中污泥膨胀类型的判别,发现低温条件下污泥膨胀是由非丝状菌过度繁殖引起的。通过试验发现一方面可以通过提高水中溶解氧、降低污泥负荷以及增加排泥次数能有效控制非丝状菌污泥膨胀,另一方面通过投加聚合氯化铝、三氯化铁、聚合硫酸铁等混凝剂可以改善活性污泥沉降性能,但抑制污泥膨胀周期较短,另外投加高锰酸钾氧化剂和聚丙烯酰胺对非丝状菌的抑制效果不明显。  相似文献   

20.
结合某氧化沟工艺污水厂对主要污染物的去除效果,对其活性污泥特性进行了分析。结果表明:系统中活性污泥在厌氧搅拌前0.5 h的平均比厌氧释磷速率为1.10 mg PO_4~(3-)-P/(g MLVSS·h),厌氧释磷效果较差;平均比好氧吸磷速率为6.30 mg PO_4~(3-)-P/(g MLVSS·h),比缺氧吸磷速率为2.83 mg PO_4~(3-)-P/(g MLVSS·h),反硝化聚磷菌占总聚磷菌的比例为44.9%;比硝化速率为7.55 mg NH_4~+-N/(g MLVSS·h),硝化效果良好;比反硝化速率存在明显的3个变化阶段,其中第1阶段比反硝化速率最大,为5.79 mg NO_3~--N/(g MLVSS·h),第2阶段比反硝化速率次之,为2.23 mg NO_3~--N/(g MLVSS·h),第3阶段的最小,为0.82 mg NO_3~--N/(g MLVSS·h),活性污泥的比反硝化速率总体较低。为此,建议将原连续非限制曝气运行方式改为间歇曝气方式,并在缺氧区投加适量碳源,以提高系统的脱氮除磷效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号