首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
运用生物膜反应器(BAR)模拟实际原水输水管道,研究了管道运行时间对生物膜微生物群落结构及出水微污染物浓度的影响。结果表明,随着BAR反应器运行时间的延长,出水p H值和CODMn浓度变化较小,溶解氧、氨氮和总氮浓度逐渐降低,运行180 d时,对氨氮和总氮的去除率最高,分别为41.3%和30.3%,浊度呈曲线变化;采用454高通量测序对运行90、120、180和240 d的四个生物膜样品中微生物群落结构进行分析,发现其微生物群落结构存在较大差异,90d的生物膜的微生物多样性最高,而240 d的生物膜具有最高的微生物丰度;BAR系统水质影响生物膜微生物的群落结构,同样,生物膜中的微生物净化了出水。  相似文献   

2.
备用水源原水管道较为封闭,原水停留时间过长会导致溶解氧(DO)浓度降低,管道环境由好氧变为缺氧甚至厌氧,从而引起水质恶化。实验室模拟M、N两种不同水源条件在原水管道的备用状态,以DO降至2 mg/L确定停留时间,探究相应的水质变化以及原水的化学稳定性和管壁微生物群落多样性。结果表明,DO在水质较差水源条件下的衰减时间明显短于水质较好的水源。两种水源水都具有严重腐蚀性,出水pH、总碱度和钙硬度均显著升高。M装置进水水质相对较差,微生物存在水平高,对有机物的去除率更高,CODMn和UV254的去除率分别为27.8%和22.9%,而N装置分别为24.6%和21.4%;M装置中的硝化作用更强,NO3--N生成率为23.4%,而N装置为16.2%。两组装置管壁生物膜中的优势菌门基本相同,但丰度较高的菌门差异较大,而丰度较低的菌门差异不明显。较高的NH4+-N浓度有利于增加硝化螺旋菌门的丰度,从而促进硝化作用。良好的水质可以增加管道内的微生物多样性,更有利于管道内生态...  相似文献   

3.
采用生活污水,研究了A/O生物接触氧化反应器的挂膜启动及对COD、NH_4~+-N、PO_4~(3-)-P和NO_3~--N的去除性能。在平均进水COD、NH_4~+-N、PO_4~(3-)-P和NO_3~--N浓度分别为179、45.8、3.61和0.93 mg/L,水温为22~25℃,DO为2~3 mg/L的条件下,采用连续流人工接种挂膜,22 d后生物膜成熟。第6天,HRT为12 h时,对COD、NH_4~+-N和PO_4~(3-)-P的去除率分别为64.29%、38.38%和18.25%,出水NO_3~--N为16.21 mg/L;第15天时HRT为9 h,开始排泥使SRT保持在30 d,对COD、NH_4~+-N和PO_4~(3-)-P的去除率分别为78.51%、67.71%和36.49%,出水NO_3~--N为17.67 mg/L,填料表面附着一层黄褐色的生物膜;第22天时HRT降至6 h,达到设计值,SRT为10 d,对COD、NH_4~+-N和PO_4~(3-)-P的去除率分别为86.84%、78.20%和73.79%,出水NO_3~--N浓度为10.79 mg/L,生物膜增厚呈深褐色,表明系统启动成功。  相似文献   

4.
采用分区曝气和分段进水的自然挂膜法实现对处理微污染原水的生物接触氧化工艺的快速启动。运行28 d后对CODMn和NH+4-N的去除率趋于稳定,分别为29.1%和68.8%。通过对挂膜期间生物相的观察,挂膜成功后,砾石表面覆盖了一层黄褐色的生物膜,其主要包括球菌、杆菌、丝状菌、原生动物(钟虫)和少量微型后生动物(轮虫),这标志着生物膜结构处于稳定状况。分子生物学检测结果显示,砾石填料在挂膜10 d左右即可形成较稳定的微生物群落结构,但氨氧化菌还没形成稳定菌群。挂膜成功后,生物膜上富集的细菌主要是贫营养菌,其中以有机物好氧降解菌紫色杆菌最多,优势氨氧化菌为亚硝化单胞菌和亚硝化螺菌属。  相似文献   

5.
考察了前置预缺氧池的A~2/O工艺系统的脱氮除磷效果及其污泥浓度的影响。结果表明,缺氧池内存在反硝化除磷作用,对PO_4~(3-)-P的去除率高达86.4%,除磷潜力较大;而前置预缺氧池内的反硝化作用明显,对NO_3~--N的去除率高达81.2%,脱氮潜力较大。与污水厂生产运行的污泥浓度(2 000 mg/L左右)相比,将污泥浓度提高1倍,好氧池的硝化反应时间可缩短33%,NO_3~--N增加率提高10.9%;缺氧池的反硝化除磷时间可缩短43%,PO_4~(3-)-P去除率提高17.2%,反硝化脱氮时间可减少44%,NO_3~--N去除率提高27.1%,但对好氧硝化速率、缺氧反硝化除磷速率和脱氮速率的影响不大。  相似文献   

6.
采用硫自养反硝化技术处理高浓度NO_3~--N废水,考察了其处理性能及微生物种群结构。在HRT为14 h、碳酸氢钠为碱度条件下,反应器脱氮负荷与脱氮量分别高达1.47 kg/(m~3·d)和800 mg/L。以石灰石作为碱度可有效降低处理成本,单级装置脱氮成本为0.814元/m~3,对于高浓度NO_3~--N废水可采取多级串联方式保证出水NO_3~--N浓度较低。解析微生物群落结构发现,在高浓度NO_3~--N条件下,系统微生物种群结构较单一,功能性微生物所占比例较高,其中脱氮硫杆菌Thiobacillus和反硝化硫单胞菌Sulfurimonas所占比例分别为37.61%和20.39%。  相似文献   

7.
养牛场废水中COD和氨氮浓度高、碳氮比高,且具有一定的生物毒性,处理过程中存在脱氮效果差、工艺流程复杂、启动周期长等问题。为此,采用以三维结构盘片为载体的生物转盘(RBC)反应器,以异养硝化-好氧反硝化(HN-AD)菌为生物强化剂,考察了生物强化RBC工艺对养牛场废水的处理效果。在驯化阶段(进水为模拟废水),当氨氮 400 mg/L时,未经HNAD菌强化的RBC2反应器对污染物的去除率明显降低,而经过HN-AD菌强化的RBC1反应器对氨氮的耐受浓度可达600 mg/L,对NH_4~+-N、NO_3~--N、TN和COD的去除率要比RBC2反应器分别高40. 75%、32. 15%、34. 68%和24. 25%。运行稳定后,采用RBC1反应器处理实际养牛场废水,对NH_4~+-N、NO_3~--N、TN和COD的平均去除率分别为81. 65%、72. 14%、65. 79%和80. 53%,明显优于传统处理技术。高通量测序结果表明,生物强化后系统的优势HN-AD菌为Acinetobacter,其丰度由接种菌剂中的1. 34%上升至18. 56%,由此推测Acinetobacter是起异养硝化-好氧反硝化作用的主要菌属。SEM观察发现,生物强化后,盘片的生物膜表面附着了大量杆状菌和球状菌。  相似文献   

8.
取盐度(污水中NaCl的质量分数)为0%的活性污泥进行驯化培养,按照质量分数为1%、2%、3%的梯度逐渐提升盐度,考察了盐度阶段性提升对活性污泥去除效果的影响,为深入研究高盐废水脱氮提供数据支撑。试验结果表明,NO_2~--N和NO_3~--N的出水浓度受盐度提升的影响较大,当盐度为3%时,NO_2~--N和NO_3~--N的出水浓度分别为50mg/L和4mg/L左右。COD受盐度提升放入影响较小,NH4+-N的去除率在盐度提升初期波动较大,待系统稳定后,NH_4~+-N的去除率依然稳定在90%以上。  相似文献   

9.
《Planning》2019,(4)
为研究不同环境因子对曝气生物滤器硝化作用的影响,采用人工模拟海水养殖废水,研究了在不同温度(10、15、20、25、30℃)与不同pH值(7.0、7.5、7.7、8.0、8.5)条件下,生物滤器(玻璃材质,高60 cm,内部直径10 cm)对总氨氮(TAN)、亚硝酸盐氮(NO_2~--N)的处理情况。结果表明:在温度为10~25℃时,生物滤器对TAN、NO_2~--N的去除速率随着温度的上升不断增加;当温度为25℃、pH为7.7时生物滤器对TAN的体积去除速率最大,达到(0.793 1±0.023 1)mg/(L·h);当温度为25℃、pH为7.5时,生物滤器对NO_2~--N的去除速率明显高于其他处理组,并在150 min左右完成对NO_2~--N的去除;试验过程中各处理组均存在不同程度的NO_2~--N积累现象,在温度为10~25℃、pH为7.0~8.5时这种现象随着温度和pH值的升高不断加剧。研究表明,相较于亚硝酸盐氧化菌(NOB),氨氧化菌(AOB)对环境温度、pH值变化适应能力更强,该研究结果可为曝气生物滤器的高效及稳定运行提供理论指导。  相似文献   

10.
水源水氨氮污染问题广泛存在,而冬季低温期氨氮污染更是饮用水生产中的难题。以前期构建的悬浮填料/沸石曝气生物滤池(BAF)系统为基础,以松花江水为研究对象,对曝气生物滤池在低温期处理氨氮的效能和响应温度变化的菌群特性进行了研究。在1.0~5.5℃的长期低温运行过程中,BAF对氨氮的平均去除率为77.08%,随着低温运行时间的延长和温度下降,硝化作用增强。利用高通量测序技术解析填料表面生物膜群落结构,发现低温期的生物膜菌群多样性虽较常温期低,但经低温长期驯化后,优势菌群差异明显,常温下的优势菌属在低温期均下降,低温期的硝化螺旋菌属和亚硝化单胞菌属的数量却高于常温期,表明硝化细菌在低温环境下是可以增殖、驯化的。  相似文献   

11.
采用中试规模的序批式生物膜反应器(SBBR),在温度为25~32℃、pH值=7. 6~8. 3、投加少量厌氧氨氧化(Anammox)菌的条件下,经过120 d的培养,成功启动Anammox工艺。反应器稳定运行期间,对NH_4~+-N和NO_2~--N的去除率分别为81. 45%和99. 00%,平均总氮去除负荷达0. 41 kgN/(m~3·d)。NH_4~+-N、NO_2~--N去除量与NO_3~--N生成量之比为1∶1. 39∶0. 25,与理论值接近。反应器中以Anammox反应为主导作用并伴有微弱的亚硝酸盐反硝化,Anammox速率达0. 103 kgN/(kgVSS·d)。填料上生物膜的Anammox菌联氨氧化酶活性明显高于反应器中的悬浮污泥,表明填料对Anammox菌具有较好的富集效果。经过驯化培养,SBBR内污泥群落结构及丰度发生明显变化,稳定运行阶段Anammox菌属含量达23. 57%,成为反应器中的优势菌种。  相似文献   

12.
生物滞留设施被广泛应用于城市地表径流污染的控制,其中基质组成、植物和饱和带是影响其去除N、P的关键。通过构建以河砂与紫色土为混合基质的生物滞留系统,种植根系发达的草本植物紫穗狼尾草,研究设置饱和带与否对去除城市地表径流中溶解性N、P的影响。结果表明,生物滞留以80%河砂与20%紫色土为混合过滤基质,在进水PO_4~(3-)-P平均浓度为(0.33±0.04)mg/L时,出水PO_4~(3-)-P平均浓度可达到(0.03±0.01)mg/L,平均去除率为91.5%;进水NH+4-N平均浓度为(3.00±0.37)mg/L,出水NH+4-N平均浓度为(1.15±0.19)mg/L,平均去除率为61.3%。基质吸附与离子交换是去除城市地表径流中PO_4~(3-)-P和NH_4~+-N的主要途径,生物滞留设置饱和带与否,不影响对PO_4~(3-)-P和NH_4~+-N的去除。但设置饱和带可显著提高对NO_3~--N的去除率。不设置饱和带时进水NO_3~--N平均浓度为(3.89±0.19)mg/L,出水平均浓度为(3.76±0.52)mg/L,平均去除率为3.4%;设置饱和带时进水NO_3~--N浓度为(3.69±0.16)mg/L,出水平均浓度为(0.75±0.04)mg/L,平均去除率为79.8%。停留时间是影响NO_3~--N去除的重要因素。对于种植紫穗狼尾草、设置饱和带且不加碳源的生物滞留系统,通过延长停留时间可以有效去除城市地表径流中的NO_3~--N。  相似文献   

13.
反硝化滤池是污水处理厂强化脱氮的重要技术途径之一。研究了进水碳氮比(COD/N)和空床停留时间(EBRT)对某再生水厂后置反硝化滤池反硝化脱氮性能的影响,同时考察了生物膜特征及其活性。在进水COD/N值为4.5、EBRT为28.2 min时,NO_3~--N去除率最高为72.69%,去除负荷为0.42 g N/(m~2·d);在相近EBRT(27.7 min)下,提高进水COD/N值至6.5和7.5,NO_3~--N去除负荷明显提高,分别为0.75和0.73 g N/(m~2·d)。在反硝化滤池底部滤层NO_3~--N的沿程降解符合半阶动力学方程,半阶动力学系数随EBRT的降低和进水COD/N值的提高而增大。反硝化所需COD/N值平均为5.67。中层滤料生物膜的生物量及其厚度最大(分别为8 678.43 mg/m~2和131.25μm)。生物膜密度由下至上逐渐增大,分别为52.58、66.12和104.59mg/cm~3。反硝化活性由下至上略微增大,分别为11.34、11.44和13.47 mg N/(g VSS·h)。生物膜微生物以Beta变形菌为主,相对丰度大于85%;Methylophilaceae科菌群相对丰度最高(42.1%);所检测到的主要菌属包括Georgfuchsia(24.3%)和Sulfuricella(4.6%)。  相似文献   

14.
N_2O是一种强温室气体,而污水脱氮是N_2O释放的重要人为源。污水生物脱氮过程不仅增加了N_2O的释放潜能,且极有可能从水中转嫁到大气中。CANON作为一种新型脱氮工艺,在处理高氨氮废水时有其独特的技术优势,已广泛用于实际污水处理中,但是进一步的研究发现,该脱氮过程中N_2O的释放量却不容乐观。在微生物机理上,分别从短程硝化、厌氧氨氧化以及反硝化阶段分析N_2O可能的产生途径,并对NH_4~+-N、NO_2~--N、曝气量等关键影响因素进行了讨论。在综合分析CANON中N_2O的产生机理和影响因素的基础上,提出优化系统运行控制条件,避免NO_2~--N的积累和低DO浓度,培养适应高NO_2~--N浓度的微生物种群,实现N_2O的减量化。  相似文献   

15.
生物沸石滤池去除微污染水源水中氨氮的挂膜启动   总被引:3,自引:0,他引:3  
胥红  邓慧萍 《供水技术》2009,3(5):10-13
对沸石滤料生物滤池处理微污染水源水中低浓度氨氮的挂膜启动性能进行了研究。试验结果表明,挂膜过程可以根据氨氮、亚硝酸盐氮、硝酸盐氮浓度的变化分为三个阶段:初期沸石发挥本身对铵离子的吸附交换性能,氨氮去除率达88%以上;中期开始出现生物硝化作用,亚硝酸盐积累明显,硝酸盐出水浓度不稳定,氨氮去除率稳定,但下降至65%左右;后期硝化反应稳定进行,亚硝酸盐迅速转化为硝酸盐,氨氮去除率稳定在60%以上。生物沸石滤池挂膜同时应考察亚硝酸盐氮、硝酸盐氮浓度变化,在出水亚硝酸氮明显积累后又稳定降低,且硝酸盐氮稳定积累时方可认为挂膜成功。进出水pH值的变化可以指示硝化反应的进行程度和生物膜形成阶段。  相似文献   

16.
长距离输水工程作为应对供水紧缺矛盾的有效措施在世界各国已有悠久的历史,近年来长距离输水管道内水质变化及管壁生物膜净水效能等问题引起国内外专家的高度关注。介绍了近年来有关长距离管道相关研究成果,包括管道微生物生长特点、净水效能及水质变化规律;预氧化作为调控输水管道水质的措施之一对水质及微生物带来的影响;针对不同氧化剂间的联用分析了抑制硝化作用、预防水质恶化的措施,以期为长距离输水管道在实际中的应用及控制管道中水质恶化提供思路。  相似文献   

17.
采用两级纯膜MBBR工艺处理低基质河道水,研究了启动过程中生物膜的硝化性能,并同步分析了生物膜厚度、生物量及微生物种群变化情况。结果显示,在冬季最不利水温条件下不接种污泥直接原水启动,经过10 d系统调试成功,出水氨氮稳定达标,一、二级MBBR区出水氨氮分别为(1.35±0.38)、(0.43±0.15)mg/L,硝化负荷分别为(0.182±0.026)、(0.066±0.020)kg/(m3·d),系统氨氮去除率达到(88.98±3.03)%,同时,系统具有一定的COD去除能力;启动过程中,负荷增长至第14天达到稳定,生物膜的生物量于第28天达到稳定,一、二级MBBR区的生物量分别为(2.66±0.36)、(2.14±0.19)g/m2,生物膜厚度分别达到(197±23)、(157±17)μm;生物膜负荷具有一定余量,能够抵抗进水负荷冲击。启动阶段,生物膜物种丰富度于第21天基本达到稳定,一级生物膜的物种丰富度、物种分布均匀程度高于二级生物膜,具有更高的物种多样性;生物膜中优势微生物主要有Nitrospira、Hyphomicrobium、Nitrosomonas、Kouleothr...  相似文献   

18.
探究了基于沸石生物固定床反应器(ZBFB)的吸附-生化解吸实现低浓度氨氮废水稳定亚硝化的可行性。当进水NH_4~+-N为50 mg/L左右时,ZBFB在吸附-生化解吸循环操作后的吸附出水NH_4~+-N都可稳定低于5 mg/L;当解吸温度为27℃时,ZBFB在前34个周期内的亚硝化生化解吸显著,出水亚硝化率(NAR)大于90%,但从第35个周期起,因硝酸盐氧化菌(NOB)对低游离氨(FA)的逐步适应,亚硝化生化解吸被破坏;逐步提升生化解吸温度可迅速恢复ZBFB的亚硝化生化解吸,并在生化解吸温度稳定在36℃时,ZBFB生化解吸出水NO_2~--N和NO_3~--N浓度分别稳定在259. 0~281. 2 mg/L和3. 2~12. 1 mg/L,对应的NAR保持在95. 5%~98. 8%,表现出稳定的NO_2~--N积累效果,实现了稳定亚硝化生化解吸。QPCR分析表明,相比于未升温条件下的生化解吸,控制生化解吸温度为36℃时ZBFB的amoA表达量明显大于Nitrobacter sp. 16S和Nitrospira sp. 16S的表达量,进一步验证了通过吸附床层升温恢复和实现ZBFB稳定亚硝化生化解吸的可行性。  相似文献   

19.
通过批次试验和连续流试验研究了土霉素对厌氧氨氧化颗粒污泥脱氮性能的影响。厌氧氨氧化颗粒污泥反应器(UASB)进水NH_4~+-N浓度为40~50 mg/L,NO_2~--N浓度为55~65mg/L,温度控制为30℃,HRT控制为1.6 h。经过60 d运行,反应器的厌氧氨氧化脱氮性能良好,出水NH_4~+-N和NO_2~--N浓度分别为3.1和6.3 mg/L,对NH_4~+-N、NO_2~--N和TIN的去除率分别为91.2%、93.4%和75.2%。在土霉素对厌氧氨氧化颗粒污泥反应器的长期抑制试验中,颗粒污泥对土霉素具有一定的耐受能力,当进水中的土霉素浓度为10 mg/L时,反应器对NH_4~+-N和NO_2~--N的去除率分别为70.7%和70.8%;当进水中的土霉素为20 mg/L时,反应器对NH_4~+-N和NO_2~--N的去除率分别降低至16.8%和18.1%。与长期抑制试验相比,批次试验中土霉素对颗粒污泥厌氧氨氧化活性的抑制作用较小,土霉素浓度为50、100、150、200和400 mg/L时,对TIN的去除速率分别为0.498、0.480、0.439、0.326和0.120 kg N/(kg VSS·d)。  相似文献   

20.
从试验原水中分离出28株高活性菌株,采用人工循环固定方式启动生物增强活性炭工艺,处理低温微污染原水,通过对其处理效能和活性炭上微生物特性的研究,结果表明:原水经生物增强活性炭工艺处理后,其对UV254、TOC、THMFP平均去除率分别为57.4%,45.2%,33.5%;活性炭上微生物量在长时期内保持相对稳定,上层和下层微生物量为分别为(4~5)×108和(2~3)×108CFU/g,而生物活性随着运行时间的延长缓慢下降.上层和下层SOUR值分别从最初1.1 ×10-3和0.75×10-3mg O2/(cm3·h)下降到0.8×10-3和0.6×10-3mg O2/(cm3·h),其主要原因为土著杂菌低量、持续侵入系统,对高活性菌群的生态位造成了一定的冲击.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号