首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
天津某再生水厂在混凝沉淀预处理系统中通过加氯以控制处理过程中微生物的生长。然而,加氯量不仅直接影响到水厂运行成本,而且对于混凝沉淀处理效果及后续微滤膜污染情况也有一定影响。采用混凝沉淀/微滤中试系统,在聚合氯化铝(PAC)投加量为12 mg/L条件下,研究了加氯量对混凝沉淀处理效果及微滤膜污染的影响。结果表明:预氯化强化了混凝沉淀/微滤系统对色度、浊度、总磷、氨氮、COD、UV254的去除效果,并在一定程度上减缓了膜污染。试验最终确定最佳加氯量为5 mg/L,这对再生水厂实际生产运行具有一定的参考作用,能够减少水厂运行成本,延长微滤膜的使用寿命。  相似文献   

2.
通过模拟试验,考察了粉末活性炭(PAC)投加点(混凝前投加、与混凝剂一起投加、沉淀后投加)对混凝/沉淀/膜滤组合工艺去除东江原水中CODMn和UV254的影响;同时采用吸附试验考察了吸附时间对PAC去除沉后水中溶解性有机物的影响。试验结果表明,在相同的PAC投加量下,在沉淀之后投加最有利于发挥PAC的吸附效能,提高组合工艺对水中有机物的去除率;同时,15 min和30 min的吸附时间对PAC去除沉后水中溶解性有机物的影响不大。由此认为,在混凝/沉淀之后采用膜滤,并将投炭点移至膜滤单元,可更加有效地发挥组合工艺各环节的优势,提高水处理效果。  相似文献   

3.
针对东营南郊引黄水库微污染原水进行了粉末活性炭/混凝沉淀/超滤联用工艺研究,首先通过烧杯试验确定了粉末活性炭(PAC)和聚合氯化铝(PACl)的最佳投量,然后采用中试装置考察了粉末活性炭的投加点对工艺净水效能的影响。在PACl投量为4 mg/L、粉末活性炭投量为2 mg/L及PAC投加在第二级机械搅拌絮凝池的工况下,该工艺对CODMn、UV254的去除率分别达到了24%和52%。正确地投加PAC能缓解膜污染,并延长超滤膜的使用周期。  相似文献   

4.
通过中试考察了混凝预处理对浸入式连续微滤工艺处理有机物的强化去除效果。研究表明,选用三氯化铁做混凝剂时的膜过滤性能优于聚合氯化铝,三氯化铁投加量为4 mg/L,反应时间为6 min时膜的过滤性能较好;采用直接微滤膜工艺对有机物的去除效果较差,膜出水CODMn去除率仅为30%,投加4 mg/L三氯化铁后CODMn去除率提高了10.5%,采用混凝预处理对提高浸入式连续微滤工艺有机物的去除效果非常有效。  相似文献   

5.
混凝沉淀/PAC吸附/超滤工艺处理引黄水库冬季原水   总被引:2,自引:1,他引:2  
采用混凝沉淀/粉末活性炭吸附/超滤工艺(简称PAC-UF工艺)处理黄河下游引黄水库冬季原水,中试结果表明:当处理冬季低温低浊水时,聚合氯化铝的最佳投量为6 mg/L,粉末活性炭的最佳投量为20 mg/L;PAC-UF工艺可以将出水的浊度控制在0.1 NTU以下,去除率达98%以上;投加20 mg/L的粉末活性炭能使混凝沉淀/UF工艺对COD_(Mn)和UV_(254)的平均去除率分别提高12%和15%;同时,投加粉末活性炭还能够缓解超滤膜的不可逆污染,但缓解的程度有限.  相似文献   

6.
吴洁  程方 《供水技术》2008,2(5):25-29
通过考察强化混凝中混凝剂种类及投加量、氧化性助凝剂种类及投加量、氧化时间、pH以及水力条件等因素对海水中Chl-a、CODMn去除效果的影响,确定了试验参数,并后续加入砂滤工艺考察其除藻效果.结果表明:在调节海水pH值为5~6,选用3 mg/L高锰酸钾预氧化30min后,投加混凝剂聚合氯化铝铁(PAFC)对Chl-a和CODMn均有较佳的去除效果.强化混凝-沉淀-砂滤工艺对Chl-a平均去除率可以达到80%以上,对CODMn去除率在50%左右,对浊度的去除率大干97%.  相似文献   

7.
以水质异常的冬季引滦原水为研究对象,进行以斜管沉淀工艺为主的中试研究。结果表明,相同加药量下,采用脉冲澄清工艺对该原水的处理效果优于斜管沉淀工艺。采用斜管沉淀工艺时,臭氧预氧化处理试验原水,满足出水水质要求所需的混凝剂投加量比采用预加氯工艺时明显减少。"原水-预加氯-混凝-聚丙烯酰胺(PAM)-斜管沉淀-过滤"工艺对该原水有较好的处理效果,建议药剂最佳投量分别为预加氯2.5 mg/L、Fe Cl320 mg/L、PAC 25 mg/L、PAM 0.1 mg/L。  相似文献   

8.
为应对可能出现的突发性铊+锑复合型污染事件,模拟自来水厂现有工艺对含有锑(Sb)和铊(Tl)的原水进行处理,分别考察了常规混凝沉淀工艺、K2Fe O4预氧化/混凝沉淀工艺以及分段处理工艺对Tl和Sb的去除效果。结果表明,常规工艺对Sb和Tl的去除效果均有限;K2Fe O4预氧化/混凝沉淀工艺对Tl的去除效果有明显提高,但对Sb的去除率反而降低;分段处理工艺对Sb和Tl都有明显的去除效果,当第1段聚合氯化铁(PFC)的投加量为10.0 mg/L,第2段K2Fe O4、聚合氯化铝铁(PAFC)的投加量分别为1.0、1.5 mg/L时,滤后水中剩余Sb、Tl的浓度分别为2.26、0.012μg/L,去除率分别达到了83.67%和96.32%。因此,分段处理可作为水厂应对突发性铊+锑复合型污染的有效应急处理措施。  相似文献   

9.
采用混凝/浸没式超滤组合工艺对深圳某原水进行中试研究,从有机物去除和膜污染控制两方面对聚合氯化铝(PAC)投加量和膜池曝气强度进行了优化。结果表明,膜池气水比为12∶1,PAC投加量为0、3、4 mg/L时,Zeta电位绝对值逐渐减小,颗粒数和COD Mn去除效果增强,继续增加PAC投加量到5 mg/L,则Zeta电位绝对值增大,颗粒数和COD Mn去除效果变差。PAC投加量为4 mg/L,膜池气水比为(7.5∶1)、(9∶1)、(12∶1)时,Zeta电位绝对值逐渐减小,颗粒数和COD Mn去除效果逐渐增强,继续增大气水比到15∶1,则Zeta电位增大,颗粒数和COD Mn去除效果变差。PAC的投加和膜池曝气可减缓不可逆膜污染,增加PAC投加量可提高DOC去除率,降低单周期TMP增幅;提高曝气强度会降低DOC去除率,降低单周期TMP增幅。  相似文献   

10.
针对垃圾渗滤液高COD、高氨氮的特征,选用了混凝沉淀、Fenton氧化、蒸发及其组合工艺对垃圾渗滤液进行预处理,通过单因素试验,探讨了各工艺的最佳运行条件。试验结果表明,采用混凝沉淀法时,PAFC最佳投加量为30 mg/L,PAM最佳投加量为4 mg/L;采用Fenton氧化法时,H2O2最佳投加量为1.5‰,H2O2∶Fe2+最佳质量比为10∶3;垃圾渗滤液的最佳预处理工艺为混凝沉淀+Fenton氧化+蒸发,此时COD,NH4-N+的去除率分别为91.22%,86.73%,为后续生化处理提供了良好的反应条件。  相似文献   

11.
采用一体化臭氧/陶瓷膜-活性炭组合工艺设备处理北江水源水,研究一体化设备对浊度、色度、CODMn、氨氮和亚硝酸盐氮等常规性指标及新兴污染物等非常规性指标的控制效果,以及臭氧对陶瓷膜污染的缓解效果。研究结果表明,臭氧/陶瓷膜-活性炭组合工艺能够直接处理水源水,在臭氧投加量为3 mg/L、PAC投加量为15 mg/L时,组合工艺对浊度、色度、CODMn和氨氮的去除率分别为99.8%、100%、72.9%和100%。组合工艺出水中未检测到大肠菌群,这表明组合工艺能够有效杀灭细菌。此外,臭氧/陶瓷膜-活性炭组合工艺对检测到的19种PPCPs的去除率约为82.2%,对检测到的5种EDCs的去除率约为92.8%。膜污染模型分析结果表明,滤饼层堵塞污染是原水进行陶瓷膜过滤时膜污染形成的主要形式。  相似文献   

12.
以南方某微污染水源水为研究对象,分析了不同化学预氧化/混凝沉淀工艺对三氯乙醛生成潜能(CHFP)的去除作用,以找出合适的化学预氧化方式及其最佳投加量,为三氯乙醛(CH)的控制提供指导。结果表明,与混凝沉淀工艺联用,能够有效去除CHFP的化学预氧化药剂有:KMnO_4、ClO_2、H_2O_2和O_3,其最佳投量分别为0.4、0.5、3和0.5 mg/L,对CHFP的去除率分别为78.73%、75.59%、77.82%和74.83%;ClO_2和O_3预氧化在较大的投加量条件下,经混凝沉淀后CHFP增加,而KMnO_4和H_2O_2预氧化在较大投加量条件下,经混凝沉淀后对CHFP的去除作用明显;臭氧/过氧化氢(O_3/H_2O_2)预氧化使CHFP增加,不适用于常规工艺中对CH的控制。  相似文献   

13.
以乐果为目标化合物,探讨了活性炭吸附、活性炭吸附-混凝沉淀工艺以及石灰碱解-活性炭吸附-混凝沉淀三种工艺对乐果的去除效果.结果表明,乐果的去除效果随着活性炭投加量与吸附时间的增加而增加,采用活性炭吸附-常规混凝沉淀工艺对乐果的去除效果要略好于单独采用活性炭吸附,但这两种工艺都不能有效去除水中的乐果.采用石灰碱解-活性炭吸附-混凝沉淀工艺时,乐果的去除率随着石灰碱解的pH值升高而增加.当原水乐果含量为0.182 mg/L,用石灰调节原水pH值为9,投加30 mg/L活性炭吸附20 min后,去除率达89.9%,沉淀出水乐果浓度为0.018 4 mg/L,满足标准要求.  相似文献   

14.
针对珠海市某水库水水质污染特征,采用聚硅酸铝铁(PSAF)作为混凝剂,通过小试试验和中试试验对其混凝效果进行研究。结果表明,PSAF对此水库水具有良好混凝沉淀效果,形成的絮体密实、沉降速度快、产生污泥体积小。对浊度的去除效果优于聚合氯化铝铁(PAFC),且远远优于聚合硫酸铁(PFS)、聚合氯化铝(PAC)。中试试验装置中,PSAF的最佳投加量为7mg/L,在此投加量下,滤前浊度去除率达到70.8%,滤后出水对浊度去除率达到94.6%。  相似文献   

15.
通过混凝/沉淀/超滤与二氧化氯氧化的组合工艺中试研究,考察了二氧化氯的混凝前投加和沉淀后投加对组合工艺的净水效能和缓解膜污染的影响,并探讨了二氧化氯投加点对超滤膜污染的影响机制.试验结果表明:二氧化氯投加点对组合工艺去除颗粒物和病原性微生物的效能无明显影响;在混凝前投加二氧化氯时组合工艺对CODMn和UV254的去除率比沉后投加的分别提高了约6.8%和7.2%.混凝前投加二氧化氯对膜污染的缓解作用大于沉后投加的,主要是因为混凝前投加二氧化氯能够强化混凝沉淀预处理,同时延长接触时间,强化对大分子有机物的氧化降解作用.  相似文献   

16.
采用硫酸铝混凝强化去除微氧EGSB反应器出水中的TP,考察了混凝时间和沉淀时间、混凝剂投量、pH和温度等对强化除磷效果的影响,以分析微氧EGSB/化学混凝组合工艺作为生活污水再生回用工艺的可行性。结果表明,在最佳Al3+/TP值(质量比)为1.5~2.3、混凝时间为20min、沉淀时间为20min的条件下,对TP的去除率可达94.6%~96.4%,出水TP可降至0.29mg/L,达到了GB18918—2002的一级A标准,证明了微氧EGSB/化学混凝组合工艺作为生活污水再生回用工艺是可行的。硫酸铝的混凝除磷效果对pH的变化较敏感,最佳pH值范围为6.5~7.2,此时对TP的去除率可达到90.8%~92.1%;微氧EGSB反应器出水pH值为6.5~8.5,投加硫酸铝后能获得85%以上的TP去除率,出水TP最高可达0.85mg/L,因此需要适当调节pH使出水TP0.5mg/L,以满足回用要求。硫酸铝混凝除磷的适宜温度为10~25℃,微氧EGSB反应器出水的温度满足此要求。  相似文献   

17.
针对受毒死蜱污染的原水,通过小试研究了粉末活性炭(PAC)吸附强化聚合氯化铝混凝工艺对毒死蜱的去除效果。结果表明,单独投加8mg/L聚合氯化铝和0.05mg/LPAM难以将毒死蜱浓度降低至《生活饮用水卫生标准》的限值(0.03mg/L)要求,需要采用PAC吸附与混凝沉淀联用工艺。当原水毒死蜱浓度超标5,10,20,30,40和50倍时,所对应的粉末活性炭最佳投加量分别为20,30,30,40,40和50mg/L,出水浓度均小于0.03mg/L。PAC吸附强化工艺聚合氯化铝混凝工艺可有效应对原水的毒死蜱污染,保障供水安全。  相似文献   

18.
为应对可能出现的污染事件,模拟水厂的工艺流程,探讨了聚合硫酸铁应急处理源水镍污染的方法。结果表明,混凝剂聚合硫酸铁的投加量为20 mg/L、助凝剂PAM的投加量为0.5mg/L,调节p H值为9.2,混凝沉淀后再经砂滤处理,对镍的去除率达到88.2%~90.1%,出水水质达到《生活饮用水卫生标准》(GB 5749—2006)的要求。在不需要回调p H值的前提下,最大处理能力达到0.25 mg/L。  相似文献   

19.
PPC去除水源水中突发性重金属铜和锌污染研究   总被引:1,自引:0,他引:1  
通过正交试验设计和单纯性优化试验设计模拟了地表水铜含量超标3倍、锌含量超标4倍的情况下,采用高锰酸盐复合药剂(PPC)强化去除这两种重金属的最优应急预案。结果表明,常规工艺对锌的去除率不到10%,对铜的最大去除率为30%;组合工艺去除铜的最优条件是:聚铝投加量为20 mg/L,PPC投加量为5 mg/L,pH值为9,PPC在混凝后1 min投加,此时铜的去除率在90%以上;组合工艺去除锌的最优条件是:聚铝投加量为20 mg/L,PPC投加量为4 mg/L,pH值为8,PPC在混凝前1 min投加,此时锌的去除率在90%以上。  相似文献   

20.
采用混凝-微滤工艺进行了地下水除氟的试验研究.静态试验表明了硫酸铝的混凝除氟效果比聚合硫酸铝的更佳.动态试验中发现,在改善饮用水水质及降低运行成本方面,采用CO2降低反应体系的pH比采用H2SO4更具有优越性.当原水F^-浓度为2.74 mg/L、硫酸铝投加量为154 mg/L、混凝反应器内CO2的溶入量为183.2 mg/L时,出水F^-浓度为0.98 mg/L、浊度<0.10 NTU、UV254为0.012 cm^-1、Al^3+<0.02 mg/L、SO4^2-浓度为125.77 mg/L、pH值为7.51,出水水质满足《生活饮用水卫生标准》(GB 5749-2006)的要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号