共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
应用SEM研究了磷酸四钙(TTCP)和无水磷酸氢钙(DCPA)组成的磷酸钙骨水泥(CPC)体系水化过程中浆体的微结构.结果表明:完全硬化的CPC由纳米级针状羟基磷灰石微晶组成,微晶与人体骨有类似的低结晶度和结构特性.CPC产物结晶形态与Ca与P摩尔比有关,Ca与P摩尔比减小,CPC水化产物的轴比增大而形态较细长. 相似文献
4.
为了研究粉煤灰对磷酸钾镁水泥(M KPC)浆体抗硫酸盐侵蚀能力的影响,选择不含粉煤灰的MKPC浆体试件(M0)和含20%粉煤灰的MKPC浆体试件(M1)进行水和5%硫酸钠溶液长期浸泡试验.测试了不同浸泡龄期下M0和M1试件的强度和吸水率,并分析了M0和M1样品的孔结构、物相组成和微观形貌.结果 表明:含20%粉煤灰的M1试件在水和5%硫酸钠溶液中浸泡360 d的强度剩余率较M0的对应结果均提高超过5%.掺入20%粉煤灰可明显改善MKPC硬化体的初始孔结构,使环境水不易渗入;粉煤灰中的活性组份在含硫酸根的碱性水环境下,会发生水化反应生成新物相填充MKPC硬化体的孔隙,使MKPC硬化体在硫酸盐长期侵蚀环境下结构劣化程度明显减轻. 相似文献
5.
利用钢渣代替石灰岩沥青混合料粗集料,采用Superpave旋转压实制备钢渣沥青混合料.测量不同水侵蚀循环次数(0次、1次、2次、3次、4次、5次)后,不同温度和荷载作用频率下两种沥青混合料的动态模量.分析了不同水侵蚀循环次数对钢渣沥青混合料动态模量的影响,并利用XRD和SEM技术手段观察胀落物的物相组成和微观形貌变化,分析了钢渣沥青混合料性能劣化机理.实验结果表明,未受水侵蚀的钢渣沥青混合料试件,其动态模量明显高于普通沥青混合料;经过水侵蚀5次后,钢渣沥青混合料0 ℃和20 ℃的动态模量明显衰减,但残余动态模量仍大于普通沥青混合料;水侵蚀对钢渣沥青混合料的高温动态模量影响明显高于普通沥青混合料.通过XRD与SEM分析发现,钢渣沥青混合料性能劣化的主要机理是由于钢渣水化生成氢氧化钙(Ca(OH)2)、碳酸钙(CaCO3)和水化硅酸钙(C-S-H),使试件局部发生膨胀开裂,从而加剧了水的浸入,导致混合料性能衰减. 相似文献
6.
采用29Si和27Al MAS NMR、XRD、SEM等测试技术研究了硫酸盐侵蚀对不同养护制度的超高性能混凝土(UHPC)水化产物微结构的影响.结果表明:标准养护和80 ℃高温蒸汽养护条件下,UHPC水化产物主要为C-S-H、Ca(OH)2、AFt、AFm和TAH;210 ℃、2 MPa蒸压养护8 h后,水化产物主要为tobermorite、Ca(OH)2和TAH.硫酸盐侵蚀对不同养护制度的UHPC抗压强度和水化产物微结构的影响微弱,但可促进210 ℃蒸压养护的UHPC胶凝浆体中TAH向AFm和AFt的转化.同时硫酸盐侵蚀180 d时,C-S-H凝胶MCL和Al[4]/Si略有降低,但降低幅度较小,UHPC具有良好的抗硫酸盐侵蚀能力. 相似文献
7.
为研究混磨不同细度石灰石粉-粉煤灰对水泥基胶凝材料水化进程和早期力学性能的影响规律,本文采用等温量热法测定了不同细度复合胶凝体系在水化温度为20 ℃时的水化放热速率和放热量,根据Krstulovic-Dabic提出的水化动力学模型计算了复合胶凝体系水化反应各阶段的动力学参数。结果表明:增加石灰石粉和粉煤灰的细度可促进复合胶凝体系水化产物的结晶成核与晶体生长,缩短水化诱导期结束时间和达到最大放热速率时间,加速水泥的水化反应速率。石灰石粉和粉煤灰细化会缩短相边界反应过程时间,使复合胶凝体系在水化程度更高时发生反应控制机制转变。抗压强度试验表明增加细度可明显提高胶砂试件的早期强度,其后期强度保持稳定。 相似文献
8.
在相同配合比条件下,选用三种不同性能的水泥配制混凝土,研究不同种类胶凝材料对混凝土的工作性能、力学性能以及抗侵蚀性能的影响.通过SEM扫描电镜观察混凝土3d、7d、28 d的浆体—骨料界面过渡区的微观结构以及水化产物形貌.试验结果表明:掺入10% SSP防腐剂后,混凝土的工作性能、力学性能均优于基准和抗硫酸盐水泥混凝土.水泥水化后期,浆体—骨料界面过渡区很难区分,水化产物增多.SSP防腐剂可以促进水泥的水化程度,生成较多的钙矾石和C-S-H凝胶,使结构更致密,提高混凝土的抗侵蚀性能. 相似文献
9.
疏水性侵蚀抑制剂使混凝土具有优异疏水效果,抑制了侵蚀性环境中介质传输,然而其作用机制尚未明确。本文对水泥浆体在不同疏水性侵蚀抑制剂(CAHA)掺量下的水化行为进行了研究,探究了其对水泥水化放热、水化物相、表面接触角、抗压强度等性能的影响。研究结果表明,CAHA降低了水泥浆体第一水化放热峰并延缓水泥水化,在水化前期抑制了钙矾石和氢氧化钙的生成,这种抑制作用在高掺量下更为显著。CAHA一定程度上降低了砂浆早期抗压强度,对28 d抗压强度影响并不明显。CAHA显著降低砂浆吸水率并使其具有疏水性。通过比对,推荐CAHA最佳掺量为胶凝材料质量的6%,此时水泥砂浆抗压强度损失较小且抗侵蚀性能明显提升。 相似文献
10.
11.
12.
13.
对比研究了生物质灰与普通粉煤灰在粒度分布、颗粒形态、化学组成、活性指数等方面的不同,并开展了不同掺量生物质灰对水泥硬化浆体抗压强度的影响研究.结果表明:生物质灰颗粒形状不规则、平均粒径及粒径分布范围较大,具有特有的细长纤维状颗粒,且其活性组分Al2O3不足普通粉煤灰的三分之一;生物质灰的火山灰活性小于普通粉煤灰;相同掺量下,生物质灰-水泥复合胶砂各龄期的抗压强度均小于普通粉煤灰-水泥复合胶砂,生物质灰掺量越大,复合胶砂的强度相比纯水泥组下降程度越大;与普通粉煤灰相比,掺加生物质灰的硬化水泥浆体微观结构更为疏松多孔,特别是其特有的细长纤维状颗粒的存在. 相似文献
14.
15.
以葡萄糖酸盐、醇胺磷酸酯、苯并三氮唑(BTA)、表面活性剂、添加剂等合成了盐水介质铝缓蚀剂并用腐蚀失重法进行了评价。在22.5%盐水介质中,葡萄糖酸钙:苯并三氮唑:硫酸锌:醇胺磷酸酯:十二烷基苯磺酸钠=1.0:1.0:0.6:0.2:0.05,50℃时,铝缓蚀率可达95%以上。 相似文献
16.
以葡萄糖酸盐、醇胺磷酸酯、表面活性剂、添加剂等合成了盐水介质碳钢缓蚀剂并用腐蚀失重法进行了评价。在 22.5%盐水介质中,硫酸锌:葡萄糖酸钙:钼酸盐:硫脲:醇胺磷酸酯:十二烷基苯磺酸钠=3.0:1.0:0.5:0.2:0.2:0.05,50℃时,碳钢缓蚀 率可达98%以上。 相似文献
17.
采用SEM、XRD研究了玻璃粉水泥浆的初期水化产物、浆体结构.并用化学结合水量和有效结合水法来定性和定量分析玻璃粉对水化初期复合体系及水泥的促进或抑制作用以及作用程度.研究表明:在水化反应初期(1d内),因为玻璃粉的掺入既由此而产生的稀释作用使有效水灰比增加而产生的对水泥熟料水化的促进作用,因此,硅酸盐水泥熟料的水化程度较高,但从整体来看,大掺量(50%)的玻璃粉延缓了复合胶凝材料总水化程度;水化开始(6 h~1 d)时,水化反应开始加速进行,水化产物的数量迅速增加,主要为纤维状CSH凝胶、针棒状钙矾石晶体和Ca(OH)2,这些水化产物彼此间相互搭接、交错生长,部分未水化的水泥颗粒镶嵌其中,并将玻璃粉粘结成整体,构成体系骨架. 相似文献
18.
19.
通过凝结时间、抗压强度和电阻率等分析手段,研究了Ca(OH)2对硫铝酸盐水泥-粉煤灰复合胶凝材料水化过程的影响.结果表明,掺入Ca(OH)2明显缩短了硫铝酸盐水泥-粉煤灰复合胶凝材料的凝结时间;当Ca(OH)2掺量为0.5%时,初凝时间最短,1 d、28 d强度均明显提高;当Ca(OH)2的掺量为2%时,28 d强度相比空白样提高了61.9%;掺入Ca(OH)2后,硫铝酸盐水泥-粉煤灰复合胶凝材料的1 d电阻率减小,随着Ca(OH)2掺量增大,电阻率逐渐减小,电阻率变化率极大值提前,说明Ca(OH)2加快了该复合胶凝材料的早期水化进程.XRD分析表明,掺入Ca(OH)2后,水化1 d时钙矾石的生成量增多,消耗无水硫铝酸钙的量增多;水化28 d时钙矾石的生成量相对变化较小,但强度明显增大,粉煤灰对硫铝酸盐水泥强度的贡献较为明显. 相似文献
20.
冷冻盐水目前广泛应用在各类冷冻机和需要降低冰点的设备及场合,有一定的腐蚀性。文章介绍了引起冷却盐水系统腐蚀的机理、缓减腐蚀的措施以及应用实例等。 相似文献