首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为解决低温水中氨氮难去除的问题,将新菌种——哈尔滨不动细菌HITLi 7~T(占总菌量的80%)和专利菌种、菌剂构建低温除氨氮的优势菌群,形成生物增强活性炭工艺(BEAC),并前置臭氧(O_3)氧化,后置紫外/氯耦合(UV/Cl),构成O_3-BEAC-UV/Cl新工艺,并在4种工况下运行,确定该工艺的最佳运行条件,分析其对消毒副产物的控制情况。结果表明,投加O_3可以提高水中可生物降解有机物(BDOC)的量,提高BEAC工艺对氨氮的去除率。当臭氧投加量为1~2mg/L,氯氮比为3~4,紫外光强为15 m W/cm~2时,O_3-BEAC-UV/Cl工艺可在0~1℃条件下将原水中1~2 mg/L的氨氮去除至0.2~0.3 mg/L,且消毒副产物生成量极低,满足《生活饮用水卫生标准》(GB 5749—2006)的要求。  相似文献   

2.
为研究异养硝化菌Y7和Y16对低温水的处理效果,构建生物增强活性炭(BEAC)滤柱,其中A滤柱接种Y7菌株,B滤柱接种Y16菌株,C滤柱接种Y7+ Y16混菌,以不接菌活性炭滤柱(D)作为对照.在5℃下研究了工艺对氨氮和CODMn的去除效果、亚硝酸盐氮与硝酸盐氮的积累特征以及进水DO含量和滤速对BEAC工艺运行效果的影响.结果表明,BEAC工艺对氨氮的去除效果优于GAC,其中C滤柱对氨氮的降解能力最强,运行期间并未出现硝酸盐氮与亚硝酸盐氮积累现象,启动期间对氨氮的最大去除率达到26.88%,对CODMn的最大去除率达到85.12%.进水溶解氧浓度对各滤柱去除氨氮和CODMn几乎没有影响;低滤速有利于BEAC对氨氮的降解,但对去除CODMn的影响较小.  相似文献   

3.
为优化以长荡湖为水源的臭氧/上向流生物活性炭(O_3/BAC)工艺的运行效能,通过小试装置,采用响应面Box-Behnken设计方法,探究臭氧氧化过程中甲醛的生成规律;借助中试装置,研究臭氧CT值(C为水中臭氧浓度,T为臭氧接触时间)以及臭氧投加比例对O_3/BAC工艺处理效能的影响,优化臭氧运行参数。结果表明,臭氧氧化过程中,各水质因子对甲醛生成量的影响程度从大到小分别为TOC浓度、臭氧投加量、pH值和Br~-浓度,随着臭氧投加量的增大,出水中甲醛含量呈现先增大后减小的变化趋势;针对长荡湖水源,以COD_(Mn)、UV_(254)、氨氮、三卤甲烷生成势和甲醛为控制指标,建议臭氧CT值采用0. 45 mg·min/L(臭氧投加量为1 mg/L,臭氧接触时间为15 min),臭氧投加比例采用3∶1∶1;同时,液相色谱/有机碳测定仪(LC/OCD)分析结果表明,在该臭氧运行条件下,臭氧能明显改变有机物性质,有助于提高生物活性炭的处理效能。  相似文献   

4.
采用O_3/H_2O_2—生物活性炭(BAC)组合工艺进行中试,分析该组合工艺控制溴酸盐生成的能力,同时考察组合工艺去除目标污染物硝基苯、UV_(254)、COD_(Mn)的情况。实验结果表明,O_3/H_2O_2—BAC组合工艺控制和去除溴酸盐的效果明显优于常规O_3—BAC联用工艺。在相同臭氧投加量条件下,投加少量的H_2O_2即可明显控制及去除溴酸盐。在去除目标污染物硝基苯方面,与仅投加O_3相比,加投H_2O_2能够明显提高硝基苯去除率,当臭氧投加量为2.0 mg/L、H_2O_2投加量为0.2 mg/L时,O_3/H_2O_2单元对硝基苯的去除率仍然略高于单独投加2.5 mg/L臭氧的,降低了给水厂的运行成本。  相似文献   

5.
臭氧生物活性炭深度处理黄浦江上游原水   总被引:7,自引:2,他引:7  
对黄浦江上游原水进行臭氧生物活性炭中试研究表明:在臭氧有效投量为2.0mg/L、臭氧接触塔和活性炭柱停留时间均为11min的条件下,臭氧生物活性炭工艺对水中CODMn和UV254的平均去除率分别为29.95%和48.83%,出水CODMn和UV254值分别为2.96mg/L和0.053cm^-1;为保证炭柱出水氨氮浓度≤0.5mg/L,建议控制炭柱进水氨氮浓度≤1.5mg/L;水温、进水浓度、炭柱停留时间以及臭氧投量对污染物去除效果均有一定的影响。  相似文献   

6.
臭氧/生物活性炭工艺在广泛应用并取得良好效果的同时也存在一定的微生物泄漏风险,并且活性炭工艺出水中的颗粒物会保护细菌,降低消毒工艺的灭活效率。研究了臭氧/生物活性炭工艺工况的改变对出水中异养菌和颗粒物数量的影响,并通过炭后水的消毒试验,确定能够保障出水水质生物安全性的消毒剂量及适宜的颗粒数控制水平。投加臭氧对臭氧/生物活性炭工艺出水异养菌数量的影响甚微,但能够减少出水中颗粒物数量;在滤速为5~9 m/h范围内,改变滤速并没有影响出水中异养菌及颗粒物数量;当臭氧投加量为1 mg/L、滤速为7 m/h时,出水异养菌及颗粒物数量分别为10~(4.01)CFU/m L和86 CNT/m L。气水联合反冲洗能够更长时间地维持出水异养菌数和颗粒数分别在10~(4.05)CFU/m L和100 CNT/m L以下。当臭氧/生物活性炭工艺稳定运行时,炭后水中颗粒物数量在50~100 CNT/m L之间,此时1.5 mg/L的氯消毒剂浓度能够保障出水水质的生物安全性,并且颗粒物的存在会增加细菌抵抗消毒剂的能力,同时出水中颗粒物数量的增加也会降低消毒剂的灭活效率。当消毒剂投量为1.5 mg/L时,粒径2μm的颗粒物数量应控制在150 CNT/m L之内。  相似文献   

7.
以模拟铁超标的水源水作为研究对象,在水厂常规工艺的基础上增加预臭氧工艺,考察了该组合工艺对含铁原水的处理效果。结果表明,常规工艺对铁的去除效果有限;臭氧—沉淀工艺可以有效去除原水中总铁,原水中总铁含量为7.5~8.0 mg/L时,臭氧投加量提高至5 mg/L即可保证出水铁含量达标,但对浊度去除效果差。结合经济性原则,当原水总铁含量为5~8 mg/L时,最佳工艺参数如下:O_3投加量为4 mg/L,PAC投加量为20 mg/L;当原水中总铁含量为8~10mg/L时,最佳工艺参数如下:O_3投加量为5 mg/L,PAC投加量为20 mg/L。  相似文献   

8.
针对松花江水源水质特点,采用臭氧/生物活性炭工艺强化常规处理工艺,对松花江微污染原水进行深度处理。中试结果表明,臭氧预氧化具有助凝作用,可节省混凝剂用量,在试验条件下,当预臭氧投量为1.0 mg/L时,可节省12%以上的混凝剂量;主臭氧氧化工艺的设置可以提高后续活性炭滤池的净水效果;在低温低浊期出水氨氮浓度难以达标,可采用加氯的方法来去除氨氮,最佳投氯量为4.5 mg/L。长期运行效果表明,采用臭氧/生物活性炭工艺强化常规工艺,所需臭氧投加量较低,系统运行稳定,抗冲击负荷能力较强,即使在冬季低温低浊期仍可稳定达标。  相似文献   

9.
粉末活性炭对马拉硫磷的吸附性能研究   总被引:2,自引:0,他引:2  
以马拉硫磷作为突发性污染物,考察了粉末活性炭对其的吸附效果。试验结果表明,粉末活性炭对纯水和滤后水中的马拉硫磷均具有较好的去除效果,对前者的去除效果更为明显,去除率随活性炭投加量的增加而升高。当马拉硫磷浓度为1.25 mg/L,纯水、滤后水中的活性炭投加量分别为12.0和20 mg/L时,反应120 min后马拉硫磷剩余浓度均低于0.25 mg/L。对滤后水而言,药剂费用约为0.06~0.08元/m3。  相似文献   

10.
臭氧预氧化强化混凝处理引黄水库水的中试研究   总被引:1,自引:0,他引:1  
针对引黄水库水的特点,采用臭氧预氧化强化常规工艺处理引黄水库水。中试研究结果表明:臭氧预氧化能够降低常规工艺出水浊度,改善对有机物的去除效果,同时提高常规工艺对氨氮和藻类的去除率。适宜的臭氧投加量为1~2mg/L,当臭氧投加量为1mg/L时,臭氧预氧化后,滤后水浊度、CODMn、UV254、氨氮和叶绿素a的去除率,与常规工艺相比分别提高了2.7,2.5,7.8,5.2和4.8个百分点。  相似文献   

11.
在实验室及中试条件下研究了臭氧—活性炭技术对石油微污染地下水的处理效果。通过石油类和高锰酸盐指数两个指标,考察了臭氧投加量、pH值、过滤速率等操作参数对污染物的去除效果。结果表明:臭氧投加量和活性炭过滤速率是最主要的影响因素,pH值对处理效果影响不显著。中试条件下适宜的臭氧投加量应为8 mg/L左右,最佳过滤速率在10 m/h附近。采用臭氧氧化与活性炭过滤组合工艺,当进水石油类浓度在1.5 mg/L以下时,出水石油类低于0.3 mg/L,高锰酸盐指数低于3.0 mg/L。  相似文献   

12.
通过小试考察了臭氧氧化对钱塘江原水的净水效果,并确定了臭氧最佳投加量和接触时间。结果表明:前、后臭氧投加量均为0. 5 mg/L时,对CODMn、UV254、氨氮、浊度、铁的去除效果较好;前臭氧接触时间为3 min,后臭氧接触时间为4~7 min,对CODMn等有机物的去除效果较好。原水中加入0. 15 mg/L溴酸盐,臭氧投加量达到2. 0 mg/L时,仍未检测到溴酸盐。  相似文献   

13.
针对臭氧-活性炭深度处理工艺处理石岩水库微污染水源水开展生产试验,研究了工艺对CODMn、浊度、氨氮和细菌的处理效果。结果表明,臭氧投加量为1.0 mg/L时,工艺运行良好,滤后水CODMn去除率达到30%以上,氨氮去除率为75%,滤后水浊度降低至0.15 NTU左右,满足标准要求。  相似文献   

14.
针对南方某湖泊水源净水厂原水氨氮在0.25~1.00 mg/L的微污染状态下时出厂水中游离氯不稳定的问题,结合水厂处理工艺进行了不同浓度氨氮对游离氯稳定性影响的试验研究。结果表明,当原水氨氮0.20 mg/L时,不影响出厂水游离氯的稳定;采用常规处理工艺、原水氨氮浓度在0.20~0.45 mg/L之间时,或采用常规处理+臭氧/活性炭深度处理工艺、原水氨氮在0.20~0.71 mg/L之间时,可在混凝沉淀前投加次氯酸钠,利用折点前加氯提高氨氮去除效果,使出厂水中游离氯保持稳定;采用常规处理工艺、原水氨氮0.45 mg/L时,或采用常规处理+臭氧/活性炭深度处理工艺、原水氨氮0.71 mg/L时,不能完全通过折点前加氯的方法降低滤后氨氮,滤后会有氯胺生成,可利用氯胺的消毒能力,以总氯控制消毒效果。  相似文献   

15.
分别以滤后水和沉后水作为进水,考察了超滤膜深度处理工艺的净水效能、膜通量、渗透性及清洗方式.结果表明,超滤膜深度处理工艺对浊度、总铁及色度具有较好的去除效果;以滤后水和沉后水作为超滤膜进水时,适宜的膜通量范围分别为(70 ~80)和(50~60) L/(m2·h);超滤膜-粉末活性炭组合工艺对浊度的去除效果很好,当PAC投加量为15 mg/L时,浊度去除率大于80.7%,TOC、CODMn 、UV254及氨氮去除率基本小于30%.  相似文献   

16.
臭氧/过滤/活性炭工艺深度处理污水厂二级出水   总被引:10,自引:1,他引:9  
采用臭氧/过滤/活性炭工艺深度处理济南市水质净化二厂的二级出水.结果表明,在臭氧投加量为3 mg/L、滤床和炭床的滤速均为6~12 m/h、各工艺段的接触时间为13 min的务件下,组合工艺对浊度、CODMn、NH4+-N和NO2--N均有一定的去除效果,而对NO3--N基本无去除作用;当原水的平均浊度、CODMn、NH4+-N和NO2--N分别为0.87 NTU、1.24 mg/L、1.78 mg/L、0.13 mg/L时,组合工艺出水的平均浊度、CODMn、NH4+-N和NO2--N分别可降至0.25 NTU、0.79mg/L、1.29 mg/L、0.05 mg/L.  相似文献   

17.
杨凯人  张静  方芳  夏勤 《供水技术》2011,5(3):15-18,22
模拟水厂实际工艺,采用臭氧-活性炭工艺处理黄浦江原水.对比试验结果表明:预臭氧和后臭氧投加量分别为1.74和2.11mg/L时,O3-AC工艺对CODMn的去除率在80%左右,能有效解决出厂水CODMn大于3 mg/L的问题;对色度的去除效果显著,但在未形成生物膜的情况下,对氨氮的去除效果仅在20%左右,对亚硝酸盐的去...  相似文献   

18.
胜利油田耿井水厂采用臭氧/活性炭工艺进行了深度处理改造,经过长时间的跟踪检测,检验了系统对有机物、嗅味物质及消毒副产物前体物的去除效果,研究了水中溴离子与溴酸盐的变化情况。结果表明,臭氧/活性炭工艺可以有效去除水中嗅味物质和微污染有机物,稳定消减消毒副产物的生成总量。在预臭氧与主臭氧投加量均为1 mg/L时,水中溴离子没有被氧化成溴酸盐。  相似文献   

19.
针对四川某水厂水库水源季节性藻类污染导致的嗅味问题,开展了臭氧氧化、活性炭滤柱吸附和投加粉末活性炭去除嗅味的试验研究。研究结果表明,3种方式均能有效去除水中的嗅味:在应急处置期间,可投加25 mg/L粉末活性炭;从长远利益考虑,新增炭砂活性滤池或臭氧-炭砂生物滤池,能解决高藻期的嗅味问题。  相似文献   

20.
采用一体化臭氧/陶瓷膜-活性炭组合工艺设备处理北江水源水,研究一体化设备对浊度、色度、CODMn、氨氮和亚硝酸盐氮等常规性指标及新兴污染物等非常规性指标的控制效果,以及臭氧对陶瓷膜污染的缓解效果。研究结果表明,臭氧/陶瓷膜-活性炭组合工艺能够直接处理水源水,在臭氧投加量为3 mg/L、PAC投加量为15 mg/L时,组合工艺对浊度、色度、CODMn和氨氮的去除率分别为99.8%、100%、72.9%和100%。组合工艺出水中未检测到大肠菌群,这表明组合工艺能够有效杀灭细菌。此外,臭氧/陶瓷膜-活性炭组合工艺对检测到的19种PPCPs的去除率约为82.2%,对检测到的5种EDCs的去除率约为92.8%。膜污染模型分析结果表明,滤饼层堵塞污染是原水进行陶瓷膜过滤时膜污染形成的主要形式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号