共查询到20条相似文献,搜索用时 0 毫秒
1.
碳热还原氮化法制备碳氮化钛粉末 总被引:1,自引:1,他引:1
以物质的量比为1∶2.5的TiO_2粉和活性炭粉为原料,于N2气氛下采用碳热还原氮化法在不同的合成温度(分别为1500℃、1600℃、1650℃、1700℃、1750℃,N2压力固定为0.1MPa)和N2压力(分别为0.05MPa、0.1MPa、0.15MPa、0.2MPa,温度1700℃)下保温3h合成了碳氮化钛粉末。研究结果表明提高合成温度和降低N2压力有利于合成碳含量高的碳氮化钛粉末;在N2压力为0.1MPa的条件下,于1700℃保温3h热处理后,可以获得平均粒径为2μm的碳氮化钛粉末。 相似文献
2.
3.
首先,以四氯化钛为原料,异丙醚为氧供体,二氯甲烷为溶剂,采用非水解溶胶-凝胶法合成高活性的TiO2凝胶;其次以其为钛源,选用分子量为1 300 000的聚乙烯吡咯烷酮为碳源,采用碳热还原氮化法合成TiN粉体。X射线衍射仪、场发射扫描电镜和激光粒度仪测试结果表明,与水解法相比,采用非水解法合成的TiO2凝胶经800℃煅烧0.5h仍为活性较高的锐钛矿相,以该凝胶为钛源,经1 200℃碳热还原氮化2h可合成纯度相对较高的TiN粉体,将合成温度升至1 300℃还原氮化5h可合成更高纯度的TiN粉体。TiN粉体颗粒呈近似球形,发育较好,粒径在1μm以下,激光粒度测定粒径主要集中在10μm左右,d50为8μm。 相似文献
4.
首先,以四氯化钛为原料,异丙醚为氧供体,二氯甲烷为溶剂,采用非水解溶胶凝胶法合成高活性的TiO2凝胶;其次以其为钛源,选用分子量为1300000的聚乙烯吡咯烷酮为碳源,采用碳热还原氮化法合成TiN粉体。X射线衍射仪、场发射扫描电镜和激光粒度仪测试结果表明,与水解法相比,采用非水解法合成的TiO2凝胶经800℃煅烧0.5h仍为活性较高的锐钛矿相,以该凝胶为钛源,经1200℃碳热还原氮化2h可合成纯度相对较高的TiN粉体,将合成温度升至1300℃还原氮化5h可合成更高纯度的TiN粉体。TiN粉体颗粒呈近似球形,发育较好,粒径在1μm以下,激光粒度测定粒径主要集中在10μm左右,d50为8μm。 相似文献
5.
《精细化工》2017,(6)
以纳米V_2O_5、纳米Cr_2O_3和纳米碳黑为原料,经过干燥、球磨混料后,在流动氮气中焙烧,得到了氮化钒/氮化铬(VN/CrN)复合粉末。利用XRD、TG-DSC、SEM、BET和TEM对合成产物进行了表征和测试,考察了反应温度和保温时间对VN/CrN复合粉末的微观结构和性能的影响。结果表明:在1 200℃、保温2 h条件下,可制备出平均晶粒直径为40 nm的VN/CrN复合粉末。该复合粉末主要由VN、CrN和VCrN_2组成,这3种物质均为面心立方结构,空间群均属于Fm3m。复合粉末的比表面积为21.09 m~2/g。将复合粉末作为添加剂加入到陶瓷磨具结合剂中进行性能测试,结果显示:当w(复合粉末)=0.2%时,陶瓷磨具结合剂抗折强度和流动性分别提高约20%和50%;当w(复合粉末)=1.0%时,其抗折强度和流动性均达到最大值115.6 MPa和207.2%。 相似文献
6.
为提高镁质含碳耐火材料中氧化镁的利用率,对该材料中的氧化镁进行提纯。以废弃镁质含碳耐火材料为原料,设计感应加热装置模型,利用感应炉加热系统对含碳原料加热,用碳热还原氧化法将废弃镁质含碳耐火材料中的氧化物在高温还原气氛下,还原成气相并在空气中氧化形成氧化镁粉体。经化学分析、XRD、SEM等测试发现,氧化镁粉体材料中氧化镁含量大于98%(质量分数),氧化镁粉体晶粒粒径为2~3μm,尺寸均匀。通过热力学分析,采用碳热还原氧化法还原生成的SiO气相在氧化过程中受到了Mg(g)、Ca(g)钙气相氧化的抑制作用。 相似文献
7.
8.
《中国陶瓷》2015,(6)
以四氯化钛和异丙醚为原料,二氯甲烷为溶剂,以非水解溶胶-凝胶法制备的Ti O2凝胶为钛源,选用分子量为1300000的聚乙烯吡咯烷酮(PVP)为碳源,采用碳热还原氮化法合成Ti N粉体。通过XRD和FE-SEM研究了PVP用量、合成温度及保温时间、氮气流量对Ti N粉体合成的影响。结果表明,适当增加PVP用量有助于Ti N的合成,但残余游离碳也相应增多;氮气流量一定时,升高合成温度及延长保温时间,有利于Ti N粉体纯度的提高,残余的游离碳变少,晶胞参数接近于标准值;当合成温度为1300℃,保温时间为5 h,氮气流量为40 m L/min时,制备出的Ti N粉体纯度高,晶粒发育良好,形状近似球形,粒径约为0.4μm。 相似文献
9.
10.
以碳热还原法制得的氮氧化铝(aluminum oxynitride,Al23O18N5,AlON)粉体为原料,Y2O3为烧结助剂,采用热压烧结法在1850~1950℃和15~25MPa下制备了AlON透明陶瓷。通过X射线衍射、扫描电子显微镜和红外光谱仪分析了AlON陶瓷样品的相组成、显微形貌和红外透过率。结果表明:所制备的AlON透明陶瓷样品未发现杂质相,且晶界处未见明显的玻璃相,晶粒间为直接结合。AlON陶瓷样品的体积密度为3.69g/cm3,约为其理论体积密度的99.5%,弯曲强度为304MPa,断裂韧性为2.14MPa·m1/2;3mm厚透明陶瓷样品的红外透过率达81.3%。而气孔、晶界和第二相杂质等是影响AlON陶瓷透明度的主要因素。 相似文献
11.
碳热还原氮化合成TiN的研究 总被引:1,自引:1,他引:1
以锐钛矿(中位径0.38μm)、金红石(中位径4.58μm)和鳞片石墨(粒度<0.15mm)、炭黑(平均粒度0.02μm)、可膨胀石墨(粒度<0.15mm)为原料,固定配比nC∶nTiO2为5∶1时分别组成不同的原料组合,并以锐钛矿和鳞片石墨为原料,改变配比nC∶nTiO2分别为3∶1、4∶1、5∶1、6∶1、7∶1和8∶1进行配料,在管式电炉、流动N2中分别于1300℃和1400℃制备了TiN,并进行了合成产物的氧化脱碳试验;采用XRD测定TiN的特征峰(d200=0.212nm)强度,以表征TiN的合成率,研究了原料粒度、反应物活性、反应温度等因素对TiN合成率的影响。结果表明:选用粒度较细或晶格活性大的原料,提高反应温度,均有利于提高TiN粉末的合成率;合成TiN粉末的最佳原料组合是可膨胀石墨和锐钛矿;以鳞片石墨和锐钛矿为原料时,其配比为nC∶nTiO2=6∶1时TiN合成率最高;合成产物中均含有一定量的碳,采用普通的加热氧化法不能除碳,其原因是TiN的氧化温度低于石墨的。 相似文献
12.
以纳米V2O5、纳米Cr2O3和纳米碳黑为原料,经过干燥、球磨混料后,在流动氮气气氛中焙烧得到了氮化钒/氮化铬复合粉末。利用XRD、TG-DSC、SEM、BET和TEM对合成产物进行了分析。结果表明:在1200 ℃、2 h条件下,可制备出平均晶粒尺寸为40 nm的VN/CrN复合粉末。复合粉末主要由VN、CrN和VCrN2组成。这3种物质均为面心立方结构,空间群均属于Fm3m。将复合粉末作为添加剂加入到陶瓷磨具结合剂中进行性能测试,结果显示:当w(复合粉末)=0.2%时,可使陶瓷磨具结合剂抗折强度和流动性分别提高约20%和50%。当w(复合粉末)=1.0%时,其抗折强度和流动性均达到最大值。 相似文献
13.
14.
采用河北开滦地区的煤矸石为原料,加入一定量的碳和TiO2作为添加剂,通过碳热还原氮化法制备出了β-Sialon材料,并且β-Sialon为主晶相。实验结果经X射线衍射分析测定了反应生成物的物相组成,分析研究了C含量和Al2O3/SiO2的比例对产物组分的影响。研究结果表明,过量加入C,不利于β-Sialon相的生成或导致其有分解的趋势;适当过量加入Al2O3,有助于β-Sialon相的形成。对β-Sialon形成过程的分析表明,在实际生产工艺中可以通过控制CO的含量来控制β-Sialon生成反应进行的速度。 相似文献
15.
16.
采用质量分数80%的粘土(广西高岭土或吉林球粘土)和20%的炭黑为原料,以白云石、CaO、TiO2为烧结助剂,经碳热还原氮化反应制备了β’-SiAlON材料。研究了烧成温度、保温时间、烧结助剂、成型压力和粘土种类等因素对制备β’-SiAlON材料的影响。结果表明,烧成温度以1450℃为宜,延长保温时间有利于β’-SiAlON相的形成;烧结助剂的催化效果以TiO2最好,白云石次之;随着成型压力的增大,合成试样中β’-SiAlON相减少;粘土原料的化学组成(m(SiO2)/m(Al2O3))对β’-SiAlON的Z值产生影响,m(SiO2)/m(Al2O3)减小时,Z值趋于增大。 相似文献
17.
本论文采用碳热还原法合成氮化铝粉体,主要研究了烧成温度、保温时间、添加剂对AlN粉末的性能影响.通过对合成的氮化铝粉末试样进行X射线荧光光谱分析、XRD分析、SEM等测试分析,结果表明:1800℃时氮化铝转化率最大,结晶度最高,氧含量仅为0.968%;保温5h更有利于晶粒的长大,颗粒大小更均匀,约为6μm;添加剂CaF2的加入有利于制品粉末结晶度的提高. 相似文献
18.
19.
以天然铝硅酸盐原料为基础,研究合成SiAlON是新世纪耐火材料的发展方向之一.本实验室采用我国丰富的高铝矾土为主要原料,以炭黑、Si粉和Al粉为还原剂,研究了还原氮化合成SiAlON过程的机理并已取得了一定的成果.3种还原剂中,炭黑的成本相对较低,对反应烧结法直接合成SiAlON材料具有重要意义,因此有必要对矾土碳热还原氮化法合成SiAlON的机理进行研究. 相似文献
20.
本文用无机铝盐借助溶胶-凝胶工艺和表面活性剂的作用制得了一种铝碳良好结合、均匀、无(或弱)团聚的混合凝胶细粉(文中简称“均质混料”),以此为原料氮化合成了纯度达98%的超细AIN粉末,文中着重分析了使用这种均质混料能降低合成条件、提高粉末性能的热力学机制,探讨了影响合成过程的诸因素,最后得出结论认为:铝凝胶均质混料的制备和使用是改进成热还原氮化工艺的最有效途径。 相似文献