共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
为了研究配合比对自密实混凝土蒸养后强度的影响及对其进行精确地预测,论文设计了27组自密实混凝土配合比,通过试验的方法测得蒸养制度下的出窑强度和28 d龄期强度,分析了配合比中不同参数对其强度的影响;并利用人工神经网络,建立了自密实混凝土配合比-强度模型.研究结果表明:在一定程度下,提高水泥用量,自密实混凝土强度越大;提高水胶比和砂率,自密实混凝土强度略微降低.基于人工神经网络建立的预测模型,可以在一定范围内准确预测自密实混凝土强度,对自密实混凝土的实际应用与推广有着重要意义. 相似文献
3.
采用XRD、29Si和27Al MAS NMR测试技术,研究了粉煤灰掺量和侵蚀龄期对卤水侵蚀下水泥-粉煤灰浆体水化产物相组成、含铝相产物迁移与转变、C-S-H凝胶微结构变化的影响规律.研究结果表明:卤水侵蚀导致浆体Ca (OH)2含量降低,AFm和TAH向AFt转变,同时生成大量Friedel盐,C-S-H凝胶中Al[4]脱出;随粉煤灰掺量增加,浆体中AFt、AFm和TAH生成量降低,C-S-H的MCL和Al[4]/Si增大,Friedel盐生成量先增后减;侵蚀早期,水泥-粉煤灰浆体结构疏松,AFt生成量较纯水泥高,后期浆体致密性提高,抑制卤水侵蚀,AFt生成量较少,C-A-S-H脱铝作用减弱. 相似文献
4.
通过对比普通混凝土、普通喷射混凝土和钢纤维喷射混凝土在(干湿循环+盐湖卤水侵蚀)共同作用下的外观形貌、抗压强度、物相组成和微观结构,研究了喷射混凝土的劣化及其机理.结果表明:(干湿循环+盐湖卤水侵蚀)150次时,普通混凝土外观形貌破损严重,喷射混凝土外观形貌较完整;普通混凝土抗压强度<普通喷射混凝土<钢纤维喷射混凝土;钢纤维喷射混凝土表层微观结构较为致密且存在CH,侵蚀产物石膏在侵蚀后期发生了二次反应;其劣化侵蚀机理包括NaCl、MgCl2、Na2SO4和MgSO4的物理结晶侵蚀及碳酸盐、硫酸盐和镁盐的化学侵蚀,但未发现氯盐的化学侵蚀产物,而喷射混凝土中还发生碳硫硅钙石型硫酸盐侵蚀. 相似文献
5.
用六种钢材,通过在盐湖卤水中腐蚀试验,表明这八种钢材抗腐蚀性能不同,钢材中元素组分含量多少对抗腐蚀性能的影响。 相似文献
6.
设计了聚丙烯纤维掺量为0%、0.2%、0.3%的三种C60高性能混凝土,制作成标准立方体试件,模拟高温试验,分别采用自然冷却和喷水冷却两种方式把C60HPC试件冷却至常温.测试混凝土试件的抗压强度和超声波速,分析C60HPC试件的抗压强度和超声波速随受火温度的变化及其受冷却方式的影响.结果表明:C60HPC试件的抗压强度随受火温度的升高而降低,当受火温度在200~300℃时,掺加聚丙烯纤维的C60 HPC试件抗压强度有所提高;随着受火温度的增长,C60 HPC试件的超声波速减小;喷水冷却后C60 HPC试件的抗压强度在400℃以前降低缓慢,但是在400℃以后降低速度加快;喷水冷却后C60HPC试件的抗压强度和超声波速值均小于自然冷却后C60HPC试件;聚丙烯纤维掺量为0.2%C60HPC试件的抗压强度和超声波速值均大于掺量为0%和0.3%的C60 HPC试件. 相似文献
7.
8.
我国西部地区盐湖分布广泛,土壤及地下水中含有高浓度硫酸盐、镁盐及氯盐,与衬砌喷射混凝土发生一系列物理化学反应,造成喷射混凝土单层永久衬砌结构耐久性能下降.为系统研究盐湖卤水侵蚀喷射混凝土耐久性能退化规律,以5%Na2 SO4+5%MgSO4+3.5%NaCl混合溶液为侵蚀介质,采用干湿交替法,分别模拟盐湖卤水及隧道衬砌侵蚀方式,开展喷射混凝土耐久性试验.通过测试混凝土相对动弹性模量、质量变化率、相对抗压强度、损伤层厚度及混凝土中离子含量,研究卤水侵蚀喷射混凝土耐久性能退化规律.结果表明,高水胶比、未掺粉煤灰及高粉煤灰掺量喷射混凝土和模筑混凝土物理力学性能退化速度快,损伤层厚度快速增大,钢纤维可显著提升喷射混凝土抗侵蚀性能.随着侵蚀的进行,混凝土中水溶性钙离子及混凝土pH值下降,水溶性钠离子和氯离子含量增大,酸溶性硫酸根离子含量快速增大.混凝土表面水化产物含量降低,密实度下降,损伤层厚度增大,物理力学性能退化. 相似文献
9.
10.
为分析矿井水腐蚀对充填膏体强度的影响,分别采用浓度为10%、20%的NaCl、Na2SO4和MgSO4三种溶液对充填膏体进行了腐蚀,分析了矿井水腐蚀对充填膏体强度的影响,并基于试验现象从化学反应和物理结晶角度探讨了矿井水腐蚀对充填膏体强度的影响机理,建立了充填膏体在矿井水腐蚀作用下强度变化的数学模型.研究结果表明:受Cl-、SO42-和Mg2+腐蚀作用的影响,充填膏体出现了强度先升高后降低的现象,出现强度最大值用时较短,进入强度降低阶段后强度降低速度较快;Na2SO4溶液对充填膏体影响最大,其次为MgSO4溶液,再次为NaCl溶液,充填膏体受腐蚀后强度降低幅度与溶液浓度正相关,建立的数学模型能够反映充填膏体受腐蚀后的强度演化规律. 相似文献
11.
12.
通过纳米SiO2与粉煤粉复掺,用纳米SiO2等量替换水泥,分别配制强度等级为C35的普通混凝土和强度等级为C60的高强混凝土,对混凝土试件进行主要性能测试.结果表明28 d龄期立方体抗压强度、轴心抗压强度、弹性模量在纳米SiO2掺量为2%~3%范围内取最大值,对C35级别与C60级别的试件28 d龄期的力学性能影响为:立方体抗压强度最大增幅分别为14%、10%;轴心抗压强度最大增幅分别为18%、14%;弹性模量最大增幅分别为17.5%、11.2%.混凝土的工作性随纳米SiO2掺入量的增加均呈快速降低趋势,相同纳米SiO2掺量的混凝土C35级别的坍落度和扩展度下降速度比C60级别的更快.混凝土的抗渗性能随纳米SiO2掺入量的增加而提高,低强度等级的抗渗透能力的提高幅度明显高于较高强度等级的混凝土. 相似文献
13.
在盐湖环境中高强与高性能混凝土的抗冻性 总被引:16,自引:5,他引:16
用快冻法研究了高强与高性能混凝土在水中和在西藏、内蒙古、新疆和青海盐湖卤水中的冻融耐久性,探讨了其冻融破坏机理.结果表明:在水中冻融时,活性掺合料严重降低了非引气高强混凝土的抗冻性,目前的非引气高性能混凝土不具备高抗冻性的特征,并非真正意义上的“高性能”,其冻融破坏起因于单硫型水化硫铝酸钙向钙矾石转化时的膨胀压,不含活性掺合料的普通与高强混凝土的冻融破坏源于水冻胀压;在盐湖卤水中冻融时,引起混凝土冻融破坏的主导因素是盐结晶压,混凝土的抗卤水冻蚀性主要取决于盐结晶压的损伤负效应和卤水冰点降低的损伤正效应,而且与盐湖卤水的成分密切相关。高强与高性能混凝土具有很高的抗卤水冻蚀性,在盐湖地区属于高耐久性的混凝土,适用于不同类型的盐湖环境。 相似文献
14.
15.
对掺聚丙烯纤维前后的C60高强混凝土(HSC)棱柱体试件进行了高温试验,分析了高强混凝土高温后轴心抗压强度的变化规律,以及聚丙烯纤维对高强混凝土高温后轴心抗压强度的影响.试验结果表明:高温后,高强混凝土的轴心抗压强度均有不同程度的降低;相同温度作用后,与不掺纤维的混凝土相比,掺聚丙烯纤维的高强混凝土轴心抗压强度有一定提高,且在相同掺量下,长度15 mm、直径35 μm的聚丙烯纤维对强度的贡献最大;借助X射线衍射(XRD)试验,探讨高温作用前后水泥净浆中物相结构的变化,初步揭示了高温对混凝土性能影响的机理. 相似文献
16.
为探究短切碳纤维对混凝土力学强度的影响机制,以C40和C50矿渣水泥混凝土为研究对象,考察了短切碳纤维长度和掺量对混凝土的抗压强度、劈裂抗拉强度和抗折强度的影响规律,特别是与不掺纤维混凝土的强度对比.实验结果表明,碳纤维的加入可使混凝土的力学强度有不同程度的提高,其中以抗折强度的增长最为明显,劈拉强度次之,而抗压强度比的增幅相对最小,在高纤维掺量时抗压强度甚至低于不掺纤维混凝土;纤维长度的增大对混凝土的力学强度增长更为有利,在低强度等级(C40)混凝土中的表现更为明显.力学分析认为,随机分布的短切碳纤维可显著提高混凝土对劈裂或弯折式破坏的抵抗作用,但对受压时所发生的剪切式破坏却难以发挥明显效果. 相似文献
17.
对混杂纤维活性粉末混凝土(RPC)不同温度等级作用并烧透(试件中心内置热电偶达到目标温度)后抗压强度进行了测试,研究了钢纤维和聚丙烯掺量对RPC抗压强度的影响.结果表明,RPC混凝土的抗压强度随着作用温度的升高总体呈下降趋势,钢纤维可以有效提高RPC混凝土抗压强度,而聚丙烯纤维可以改善RPC高温后性能和抑制爆裂,混杂纤维可优势互补.基于实验结果,给出了在钢纤维体积掺量2%,同时混掺聚丙烯体积掺量0、0.1%和0.2%下的RPC平均抗压强度与受火温度的关系式. 相似文献
18.
通常可采用提高混凝土强度的方式来提高混凝土的抗氯离子渗透性能,但实践证明该方法不一定能达到预期工程目标.本文通过4因素3水平正交试验研究了混凝土强度与氯离子渗透能力之间的关系.选择水胶比、矿物掺合料掺量、胶凝材料总量、石灰石粉占矿物掺合料的比例等4个影响因素,得出以下结果:对于混凝土强度,矿物掺合料是影响最大的因素,而石灰石粉的影响是最小的;但对于混凝土抗氯离子渗透性,石灰石粉掺量是影响最大的因素.石灰石粉掺量增加可降低混凝土强度,但可增加抗混凝土氯离子侵蚀的能力.可通过调整石灰石粉的掺量来增强混凝土抗氯离子侵蚀能力并控制其强度不致过高.存在使混凝土最密实,混凝土抗氯离子渗透性最好的最优石灰石粉掺量. 相似文献
19.
20.
本文主要研究了不同养护温度下混凝土的强度及抗氯离子渗透性.通过测定出标准养护、3℃养护、-3℃养护以及变温(5→-3℃)条件下养护混凝土不同龄期的抗压强度,分析了低、负温养护下混凝土强度增长规律并与标准养护下混凝土强度进行比对得出:养护温度是影响混凝土强度的重要因素,前期养护温度越低,28 d的抗压强度越低;低、负温下养护时,混凝土的强度早期增长比标养下慢,后期增长比标养下快;变温养护下,3d前强度增长较快,3d后其强度的增长与-3℃养护的混凝土差不多.同时采用直流电量法对这四种养护情况下56 d时混凝土进行了抗氯离子渗透性研究,试验结果表明:养护温度越低,混凝土的抗氯离子渗透性越差. 相似文献