首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M5锆合金是法国法马通公司开发研制的新一代燃料包壳材料,现已用作第3代改进型燃料组件AFA-3G燃料棒的包壳。核燃料包壳管在正常服役工况下,经受强烈的中子辐照,同时管内外均承受交变应力和温度作用,以及电厂定期开停堆,使得包壳经常产生周期性塑性变形,因此,锆合金包壳的疲劳行为研究成为核安全防护的重要课题之一。特别是当前核电站追求高燃耗、低燃料循环成本,换料周期更长,这样就对燃料包壳材料提出了更高的要求。核电站用包壳管疲劳失效是导致反应堆燃料元件发生破坏的主要原因之一。本工作对国产及法国产两种M5锆合金包壳管的疲劳…  相似文献   

2.
苏联《国外原子技术》1980年7月号综合报道了世界各国反应堆内锆合金尺寸的变化,现简介如下:锆合金已被广泛地用作核反应堆的结构材料。到目前为止,有130座以上的动力堆燃料包壳、套管(或导管)和燃料组件的其它部件是用锆合金制造的;有25个反应堆  相似文献   

3.
水冷动力堆用锆合金的疲劳   总被引:7,自引:2,他引:7  
锆合金是水冷动力堆核燃料元件的包壳材料和堆芯的其它结构材料,在反应堆运行时,堆功率的波动和水冷却介质的流动使燃料组件及其它构件发生循环变形,在极端情况下出现破损。本文概述了堆内锆合金包壳循环变形的特点,并综述了锆合金的循环变形行为,循环变形下的组织结构演化,疲劳裂纹的扩展以及影响疲劳寿命的因素,在此基础上,针对高性能燃料元件的发展趋势,指出了有待进一步研究解决的问题。  相似文献   

4.
N36合金是我国自主研发的先进锆合金,将作为华龙一号反应堆燃料元件的包壳材料。为了研究N36合金包壳的堆内性能,验证其用于燃料元件包壳的可行性,以N36合金为包壳设计了N36合金特征化燃料组件,在秦山二期核电厂反应堆内进行了辐照考验,并在每循环末通过池边检查获取堆内性能数据,基于堆内数据对N36合金包壳的性能进行了分析和评价。本文研究提供了N36合金特征化燃料的辐照考验方案、N36合金特征化燃料的设计、堆内性能数据的获取方式以及N36合金与Zr-4合金堆内性能对比结果。   相似文献   

5.
对于一种新型锆合金包壳材料,在商业反应堆中开展服役条件下的辐照考验是其研发必不可少的关键环节。相比于国际核电发达国家在锆合金包壳材料研发中积累的丰富商业堆辐照考验,国内自主锆合金仅开展了有限的商业堆先导辐照考验,且考验的燃耗水平偏低。本文将通过对国外锆合金辐照考验经验的总结及自身实践经验,给出锆合金包壳商业反应堆辐照考验时在方案设计上的一般方法和堆芯安全评估、风险应对上的基本考虑,为国内锆合金商业堆辐照考验研究提供参考。  相似文献   

6.
通过修改系统分析程序RELAP5 MOD4.0的点堆动力学模型与流动传热模型,使其具备了模拟液态铅铋冷却次临界反应堆动力学特性的能力;利用改进的程序模拟了加速器驱动嬗变研究装置(CiADS)的次临界反应堆燃料包壳在发生束流瞬变时的响应特性;利用ANSYS17.0程序分析了CiADS次临界反应堆燃料包壳束流瞬变下的应力变化。研究表明:失束时间越短,燃料包壳的温度回升越慢;燃料包壳不会因可能发生的束流超功率事件而发生熔毁;燃料包壳内外壁面的温差变化是影响应力变化的主要因素;CiADS次临界反应堆的燃料包壳不会因束流瞬变而发生应力破坏。  相似文献   

7.
锆合金因具有耐腐蚀、耐辐照、低蠕变,以及较好的中子学性能等特点,被广泛用于制造压水堆燃料包壳管、定位格架等燃料组件构件。从中子物理学角度,锆同位素在中能区存在较为明显的共振现象。工业应用广泛的传统等价理论共振方法只考虑燃料区的共振效应,对于包壳材料中锆同位素的共振现象,通常予以忽略,或简单以典型参考背景截面(通常为3×10-22 cm2)下产生的微观截面来考虑。这些传统处理方式可能会导致多达200~300 pcm的反应性偏差。因此,基于对影响压水堆燃料包壳锆同位素有效共振截面的各种主要因素的分析,本文确定了一种预制截面表的锆同位素共振计算方法。数值结果表明,这种共振处理方法可提供较为准确的锆同位素多群微观截面,并能有效改善组件无限增殖因数的计算精度。此外,也对这种方法在弥散型燃料锆基体共振计算中的适用性进行了探讨。  相似文献   

8.
正【英国《国际核工程》网站2021年5月4日报道】俄罗斯博奇瓦尔无机材料研究所(VNIINM)2021年4月29日宣布计划在年底完成耐事故燃料试验组件的第三个辐照周期测试。俄2019年1月在核反应堆研究所(RIAR)MIR研究堆中启动对首批两个耐事故燃料试验组件的辐照测试。两个组件由新西伯利亚化学浓缩厂(NCCP)制造,含有2种燃料芯块和2种包壳:燃料芯块分别是传统二氧化铀芯块和具有更高铀密度和导热性的铀钼合金芯块;包壳分别是带铬涂层的锆合金包壳和铬镍合金包壳。  相似文献   

9.
基于COMSOL平台开发了一套基于多物理场全耦合的燃料性能分析程序,并通过径向功率分布模型对比验证了该程序的正确性与准确性;然后进一步分析了U3Si2燃料与双层SiC包壳组合、U3Si2燃料与锆合金包壳组合在反应堆正常运行工况下的性能,并与UO2燃料与锆合金的组合进行了对比分析。计算结果发现U3Si2燃料与锆合金包壳组合相比UO2燃料与锆合金的组合具有更低的燃料中心温度、裂变气体释放量及内压,但气隙闭合时间会提前;而U3Si2燃料与双层SiC包壳的组合相比U3Si2燃料与锆合金的组合具有更高的燃料中心温度、更大的裂变气体释放量及内压,且随着燃耗的增加,其燃料中心温度大幅增加,与锆合金包壳相比,双层SiC包壳能够有效延迟气隙闭合,缓解燃料与包壳的力学相互作用。   相似文献   

10.
陈启董  高付海 《核技术》2022,45(1):82-88
快中子反应堆二氧化铀燃料元件在高燃耗、高中子注量率、高线功率和高温状况下运行,燃料与包壳材料会发生复杂的物理化学相互作用。燃料元件化学相互作用模型的建立对高燃耗快堆燃料元件的设计非常重要。针对快中子反应堆氧化物燃料元件与包壳材料发生的化学相互作用,采用动力学模型建立了二氧化铀与奥氏体不锈钢、铁素体-马氏体钢包壳材料的化学相互作用模型,并通过实验数据验证该模型。结果表明:建立的快堆二氧化铀燃料与奥氏体不锈钢的腐蚀模型可以成功预测最大燃耗10.8at%、辐照损伤87.5 dpa的包壳腐蚀;建立的快堆二氧化铀燃料与铁马钢的腐蚀模型可以成功预测最大燃耗9.3at%、辐照损伤76.6 dpa的包壳腐蚀。研究结果为高燃耗二氧化铀辐照元件及示范快堆燃料元件的设计和性能预测提供重要的参考价值。  相似文献   

11.
反应堆系统发生瞬态工况时,冷却剂温度的瞬间大幅度变化会对燃料元件包壳结构完整性造成冲击,危及反应堆安全。本文以某压水堆3×3燃料组件为对象,采用流固热耦合方法对冷水事故下燃料组件的流动换热特性和燃料元件包壳温度、变形及应力进行了三维精细化模拟。结果表明:定位格架能够增强燃料棒表面的对流换热强度;包壳变形时向与刚凸接触的一侧折弯,向与弹簧接触的一侧凸起;包壳与定位格架接触部位的温度和最大等效应力随事故时间不断增大,且最大等效应力超过了包壳材料的屈服强度,将发生强度失效,影响其结构完整性。本文研究可为反应堆燃料元件包壳瞬态工况下的完整性评价提供借鉴。   相似文献   

12.
在反应堆运行期间,特别是运行后期,由于燃料芯块与包壳的机械相互作用以及燃料芯块的裂变气体的释放,包壳管将承受较大的双轴应力。为保障在反应堆运行期间的安全性,燃料元件包壳管的完整性非常重要。而内压爆破试验更能体现出燃料包壳材料在堆内时的真实受力状态。  相似文献   

13.
《核动力工程》2017,(6):180-184
在反应堆运行过程中燃料棒具有复杂的堆内行为,准确可靠的堆内燃料行为预测对于反应堆安全计算、燃料设计需求及燃料性能评估都是所必须的。本研究考虑了UO2芯块与锆合金包壳的相关热效应与辐照效应,并考虑间隙气体热传导、辐射换热、接触热传导的影响;分别编制用户自定义子程序,将燃料棒材料的辐照效应、热效应以及间隙换热等引入商用有限元分析软件ABAQUS,建立了燃料棒辐照-热-力耦合行为的精细化数值模拟方法。  相似文献   

14.
正锆合金是反应堆燃料组件(包括包壳、导向管等)的重要结构材料,为保障燃料组件在服役期间的完整性,要求锆合金材料具有良好的高温力学性能。目前中科华研究院正在开展锆合金材料研发,本文针对其研发的3种锆棒(编号a、b、c)、9种锆管(编号A、B、C、E、G、H、X、Y和Z)开展了不  相似文献   

15.
正【英国《国际核工程》网站2019年1月2日报道】俄罗斯核燃料产供集团(TVEL)旗下新西伯利亚化学浓缩厂(NCCP) 2018年12月27日宣布,已制造出适用于包括VVER在内的压水堆的耐事故燃料试验组件。试验组件中含有2种燃料芯块和2种包壳:燃料芯块分别是传统二氧化铀芯块和具有更高铀密度和导热性的铀钼合金芯块;包壳分别是带铬涂层的锆合金包壳和铬镍合金包壳。这些芯块和包壳组成了4种燃料棒。  相似文献   

16.
利用反应堆系统分析程序RELAP5?mod4.0模拟了加速器驱动嬗变研究装置(CiADS)次临界反应堆燃料棒在发生失束事件时的响应特性;利用有限元软件ANSYS?17.0计算了CiADS次临界反应堆燃料包壳在失束事件下的疲劳寿命;预测了中国未来百兆瓦级加速器驱动次临界系统(ADS)中燃料包壳的疲劳寿命。研究表明:失束时CiADS次临界反应堆功率瞬间下降到满功率的2.156%;失束事件下CiADS次临界反应堆的燃料包壳的疲劳寿命在108次以上;失束事件不会对中国未来百兆瓦级ADS中的燃料包壳造成疲劳损伤。   相似文献   

17.
左跃 《中国核电》2018,(1):14-14
为了保证核电站的安全,核电站在放射性物质和环境之间设了三道屏障,只要其中有一道屏障是完整的,就不会发生放射性物质外泄的事故。第一道屏障为燃料芯块和包壳。核裂变所产生的放射性物质98%以上滞留在二氧化铀陶瓷芯块中不会释放出来。燃料芯块密封在锆合金包壳内,防止燃料裂变产物和放射性物质进入一回路水中。第二道屏障为压力容器和一回路压力边界。由核燃料构成的堆芯封闭在壁厚20厘米的钢制压力容器内,压力容器和整个一回路都是由耐高温、高压的材料制成,放射性物质不会泄漏到反应堆厂房中。第三道屏障为安全壳。反应堆厂房是一个高大的预应力钢筋混凝土构筑物,壁厚近1米,内表面加有6毫米厚的钢衬里,防止放射性进入环境。  相似文献   

18.
锆合金包壳的腐蚀和吸氢性能是影响燃料棒堆内性能的重要因素。本文在锆合金包壳均匀腐蚀吸氢基本机理和现有模型的基础上,结合某特定燃料棒包壳材料的具体情况和使用特点,建立了包壳材料的均匀腐蚀和吸氢模型,并根据现有辐照数据对所建立的模型进行了验证。  相似文献   

19.
正核燃料包壳是反应堆安全稳定运行的重要保障,但其工况特别苛刻,需长时间工作在高温、高压环境中。为了保证反应堆的安全运行,包壳应在整个服役期间保持完整性。因此,在包壳管研发过程中,应该充分了解包壳管的高温蠕变性能。本文针对该问题,对国核宝钛锆业有限公司提供的两种锆管在400℃下,开展了3种不同应力水平下的单轴蠕变试验,并对试验数据进行了分析,研究结果如下:1)在200h的高温蠕变后,两种材料的蠕变应变与稳态蠕变速率具有相似的  相似文献   

20.
核燃料元件是反应堆的核心部件,由燃料芯块、包壳及其构件组成。由于燃料元件的运行环境比较恶劣,中子辐照、冷却剂的腐蚀及在开堆、停堆、和运行后期燃料芯块与包壳的机械相互作用和裂变气体产物的释放,使包壳管承受双向应力,均会造成燃料元件的力学性能下降,形成安全隐患,它的安全性能直接影响反应堆的安全可靠性。为更好地模拟包壳在堆内的受力状态,一般采用内压爆破试验来获得包壳材料的断裂强度与延性数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号