首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of bright annealing (BA) on enhancing formability of stainless steel 304 tube in a tube hydroforming (THF) process were studied. The tube material was the metastable austenitic stainless steel 304 with an initial thickness of 0.5 mm and an outer diameter of 31.8 mm. Both FEA and experimental results showed that THF process of the investigated part alone failed to achieve desired tube expansion of the diameter of 50.8 mm without severe fracture. Thus, a heat treatment process, also known as bright annealing (BA), which caused little to none oxide on the surface of annealed tube, was considered. Initially, effects of different annealing parameters such as temperature and holding time on the material formability were investigated using tensile tests. Stress–strain responses of various conditions were compared. As a result, an annealing process consisted of heating at the temperature of 1,050 °C, holding for 30 min, and rapidly cooling by purging N2 gas was identified. This annealing should be applied intermediately after a pre-forming step. With the aid of the BA process, tube deformation was significantly increased and the required tube expansion could be therefore attained. In addition, strain-induced martensitic transformation occurred during the forming process was examined by X-ray diffraction (XRD) method. The amounts of martensite taking place in tubes (pre-forming, post-forming, and after annealing) were determined and discussed.  相似文献   

2.
Due to the complicated material and structural characteristics of bi-layered non-homogeneous bellows (BNBs) in hydroforming, the bellow deviates easily from its designed profile and this inevitable phenomenon results in a low forming precision. Therefore, it is important to study the springback behavior of bellows for precision forming. Based on finite element (FE) analysis, comparative studies on profiles of single-layered bellows, bi-layered homogeneous bellows (BHBs), and BNBs with two expansion ratios (k, the ratio of outer-to-inner diameter) k = 1.2 and k = 1.6 as well as two materials 304SS and Inconel 718 are implemented. The springback behaviors of different simulation settings are investigated, and several conclusions are drawn: (1) after springback, the U-shaped convolution profile is changed to tongue shape accompanied by a 2.5~38.5% axial elongation and a 0.1~0.6% radial shrinkage; (2) the springback tendency grows with the increase of number of layers, the improvement of mechanical properties of material, and the decrease of expansion ratio.  相似文献   

3.
The thermal expansion of pipes depends on both the temperature of the pipe and the expansion coefficient of the piping material at the operating temperature. In the case of a double-layered tube consisting of two different tube materials, the thermal deformation behaviors are dependent on the relative tube sizes, thermal expansion coefficients, and the mechanical properties of the inner and outer tubes. For the safe and reliable application of double-layered tubes that are fabricated by hydroforming, the thermal stress in circumferential direction and the gap between the inner and outer tubes need to be analyzed over a wide range of temperatures (?50°C~200°C). As it is difficult to measure the thermal stress and the gap between tubes at operating temperature, this study has analytically investigated the thermal deformation behavior of a double-layered tube. From the analytical model, the effect of hydraulic pressure, residual stress, and the relative sizes of the inner and outer tubes on the resultant thermal deformation, such as the circumferential thermal stress and the gap between inner and outer tubes, has been analyzed. The analytical results provide a theoretical basis for determining the reliable operating temperature of double-layered tubes.  相似文献   

4.
This article studies tubular hydroforming of high strength low alloy (HSLA) and dual phase (DP600) straight tubes under the action of end feeding loads. Experiments demonstrate that higher end feed loads enhance the formability of the tubes and increase the internal fluid pressure for onset of necking and bursting. Because of the action of the internal pressure and the axial compressive load, the onset of localization (necking) is due to a complex three-dimensional state of stress. Using free expansion experiments, approximate upper and lower bound strain-based forming limit curves are determined for the tube materials. These limit curves, in turn, are used to derive upper and lower bound extended stress-based forming limit curves [Simha et al., Prediction of necking in tubular hydroforming using an extended stress-based FLC. Transactions of the ASME Journal of Engineering Materials and Technology 2007;129(1): 36-47]. In conjunction with finite element computations that use solid elements to model the tube, these stress-based limit curves are used to predict upper and lower bound necking pressures under the action of end feed loading. These predictions of necking pressures, when an appropriate coefficient of tube-die friction is used, are found to bracket the experimentally measured necking pressures. Computations using plane stress shell elements to model the tubes are shown to give erroneous results, since the plane stress approximation is not valid when tubes are hydroformed in a die.  相似文献   

5.
车身结构影响了整车的碰撞安全性,其中车身承载部件在碰撞过程中主要表现为剪切失效,因此需要对车身材料的动态剪切力学特性展开研究。为了描述6061-T6铝合金材料在复杂工况下的力学特性,进行了准静态和动态力学性能试验。基于不同应力状态和应变率下铝合金力学性能的测试数据,标定了材料的本构模型和断裂模型参数,并通过对比试验与仿真结果验证了材料参数的准确性。为了实现拉伸试验机开展铝合金薄板剪切试验,设计四种形状的薄板剪切试件,采用数值模拟对比所设计剪切试件的应力及应变分布,并分析不同剪切应变率对6061-T6铝合金材料剪切力学特性的影响规律。结果表明:圆形开口对称试件适用于研究塑性变形阶段的失效断裂,而圆形开口偏置试件适用于研究弹性变形阶段的应力应变关系。在低剪切应变率范围内,6061-T6铝合金无显著的应变率强化效应,然而随着应变率的增加敏感性有所提高。  相似文献   

6.
Numerical analysis and design for tubular hydroforming   总被引:2,自引:0,他引:2  
To get an optimum deformation path for tubular hydroforming, the hydroforming limit of isotropic and anisotropic tubes subjected to internal hydraulic pressure, independent axial load or torque is firstly proposed based on the Hill's general theory for the uniqueness to the boundary value problem and compared with those of the conventional sheet forming. The influences of the deformation path, the material properties and the active length–diameter ratio on the nucleation and the development of wrinkling during the free tubular hydroforming are also investigated. The above theory is used as a criterion and implemented with some new functions in our ITAS3D, an in-house finite element code for simulating the sheet forming, to control the materials flow and to prevent the final failure modes from occurring. Finally, the tubular hydroforming of an automobile differential gear box is taken as an example to show the efficiency and usefulness of the algorithm.  相似文献   

7.
The flow stress, used to describe the plastic deformation behavior of thin-walled tube, is one of the most important parameters to ensure reliable finite element simulation in the tube hydroforming process. In this study, a novel approach of on-line measurement based on digital speckle correlation method is put forward to determine flow stress of thin-walled tube. A simple experimental tooling is developed and free-bulged tests are performed for 304 stainless steel and H62 brass alloy tubes. An analytical approach is proposed according to the membrane theory and the force equilibrium equation. The developed method is validated by means of FE simulations. The results indicate that the present method is acceptable to define the flow stress in the tube hydroforming process.  相似文献   

8.
6061-T651铝合金动态力学性能及J-C本构模型的修正   总被引:3,自引:1,他引:2  
为合理描述6061-T651铝合金的应力流动行为,利用万能材料试验机和霍普金森压杆,分别进行准静态、高温和高应变率下的材料力学性能测试,获得材料在不同条件下的应力应变曲线。基于试验结果,修正Johnson-Cook本构模型得到MJC(Modified Johnson-Cook)模型,并标定MJC模型各项参数。为校验MJC模型及参数的有效性,利用一级气炮发射直径为5.95mm的圆柱弹体冲击刚性靶的Taylor杆试验以及直径为12.68mm的刚性弹撞击厚度为2mm靶板的试验。最后,采用ABAQUS/Explicit有限元软件建立Taylor杆和弹靶冲击试验的三维模型,基于MJC本构模型进行Taylor杆冲击、以及结合MMC(ModifiedMohr-Coulomb)断裂准则进行弹靶冲击的数值模拟计算。研究结果表明,修正的MJC本构模型能够有效地描述6061-T651铝合金材料在大应变、高应变率和高温下材料的应力流动行为和变形行为。  相似文献   

9.
Both experimental and simulation studies were run to investigate the effects of deformation sequence on stress and strain states and thickness distribution during tailor-welded tube hydroforming. The effects of geometrical boundary condition were also studied. Then, an approach to improve thickness uniformity was put forward. Both stress and strain histories indicate that the deformation states of thinner and thicker tubes were obviously different duo to the difference in thickness during tailor-welded tube hydroforming. These induce tensile strain concentrates to happen near weld seam on thinner tube, but compressive strain on thicker tube, which lead to strain mutation around weld seam on tailor-welded tube components. As result, bigger thinning takes place on thinner tube. The difference in thinning ratio between thinner and thicker tubes reaches about 6.6%. By deformation sequence optimization, thickness distribution uniformity can be improved obviously. When deformation sequence altered from thicker tube to thinner tube, the difference in thinning ratio between two segments can be decreased to 1.5%. At last, the effects of geometrical parameters of preform component were analyzed and the suitable parameters were given.  相似文献   

10.
Two-layered tubular joints are suitable for special applications. Designing and manufacturing of two layered components require enough knowledge about the tube material behavior during the hydroforming process. In this paper, hydroforming of two-layered tubes is investigated analytically, and the results are verified experimentally. The aim of this study is to derive an analytical model which can be used in the process design. Fundamental equations are written for both of the outer and inner tubes, and the total forming pressure is obtained from these equations. Hydroforming experiments are carried out on two different combinations of materials for inner and outer tubes; case 1: copper/aluminum and case 2: carbon steel/stainless steel. It is observed that experimental results are in good agreement with the theoretical model obtained for estimation of forming pressure able to avoid wrinkling.  相似文献   

11.
In tube hydroforming, circular components are hydrobulged or hydroformed from tubular blanks with internal pressure and simultaneous axial loading. Thus the tube can be fed into the deformation zone during the bulge operation allowing more expansion and less thinning without any defects such as wrinkling, buckling, and bursting. By contrast with the buckling and the wrinkling, the bursting is generally classified as an irrecoverable failure mode. Hence in order to obtain the sound hydroformed products, it is necessary to predict the bursting behavior and to analyze the effects of process parameters on this failure condition in hydroforming processes. In this study, a forming limit stress diagram (FLSD) is constructed by plotting the calculated principal stresses based on the local necking criterion. Using the theoretical FLSD, we carry out the numerical prediction of bursting failure in a hydroforming process, which usually has non-linear strain path. Finite element analyses are carried out to find out the state of stresses during simple hydroforming operation, in which the FLSD is utilized as the forming limit criterion for assessment of the initiation of necking, and influences of the material parameters on the formability are investigated. In addition, the numerical results obtained from the FEM combined with the FLSD are confirmed with a series of bulge tests in view of bursting pressure and show a good agreement. Consequently, it is shown that the theoretical and numerical approach to bursting failure prediction proposed in this paper will provide a feasible method to satisfy the increasing practical demands for assessment of the forming severity in hydroforming processes.  相似文献   

12.
杨连发  邓洋  郭成 《机械工程学报》2007,43(11):200-205
摩擦对管材液压成形有极大的影响,管材摩擦因数的确定是一项极其重要的工作。在分析比较现有测试方法的基础上,基于径压胀形原理及其变形规律提出确定管材液压成形胀形区摩擦因数的新模型。该模型以恒定内压力下圆形管材径压胀形成方形断面后,以断面对角线长度差作为确定摩擦因数的测量指标。对比对角线长度差的有限元数值模拟结果及实测结果,以此确定管材液压成形时胀形区的摩擦因数。对低碳钢及不锈钢管的有限元数值模拟分析表明:对角线长度差与摩擦因数及内压力均成指数关系,该长度差对摩擦力很敏感且可方便测量,也可作为针对管材液压成形胀形区润滑剂特性的评定指标。所提出的新模型具有简单、实用等优点。  相似文献   

13.
Macroscopic superplastic behavior of metallic or non metallic materials is usually represented by the strain-rate sensitivity, and it can be determined by tensile tests in uniaxial stress state and bulging tests in multi axial stress state, which is the actual hot forming process. And macroscopic behavior of Non-SPF grade materials could be described in a similar way as that of superplastic materials, including strain hardening, cavity and so on. In this study, the material characterization of non-SPF grade Inconel 718 has been carried out to determine the material parameters for flow stress throughout free bulging test under constant temperature. The measured height of bulged plate during the test was used for estimation of strain-rate sensitivity, strain-hardening index and cavity volume fraction with the help of numerical analysis. The bulged height obtained from the simulation showed good agreement with the experimental findings. The effects of strain-hardening and cavity volume fraction factor for flow stress were also compared.  相似文献   

14.
胀接残余拉伸应力是造成核岛换热设备换热管应力腐蚀开裂的主要原因。选取SB -163 UNS N06690镍基合金换热管开展胀接试验,检测分析换热管胀接残余应力。研究结果表明:换热管胀接过渡区残余拉应力最大,胀接区域次之,未胀接区域最小;机械胀接工艺使管子变形量明显大于液压胀接,过渡区域残余拉应力相对较大,且随壁厚减薄率的增加而变大。  相似文献   

15.
某电厂汽轮机汽封加热器的TP304换热管出现裂纹,对已泄漏的换热管取样分析,TP304不锈钢管的化学成分和力学性能都符合技术条件要求,有应力腐蚀倾向,裂纹附近有较大拉应力,裂口表面含有Cl离子和Na离子等腐蚀介质,TP304管是由于应力腐蚀引起的开裂。  相似文献   

16.
Feasibility study on optimized process conditions in warm tube hydroforming   总被引:1,自引:0,他引:1  
Feasibility study has been performed to estimate the optimized process conditions in warm tube hydroforming based on the simulated annealing optimization method. Precise prediction and control of process parameters play an important role in forming at warm conditions. Optimal pressure and feed loading paths are obtained for aluminium AA6061 tubes through the simulated annealing algorithm in conjunction with finite element simulations. Numerous axisymmetric geometries are investigated and the effects of expansion ratio, corner fillet to thickness ratio, and initial diameter to thickness ratio are studied. For the feasibility estimation, warm hydroforming experiments have been conducted on aluminum AA6061 under optimal designed conditions. The results show that the optimization procedure used in this research is a reliable and feasible tool in determination of optimal process conditions for the sound warm hydroforming process.  相似文献   

17.
In this paper, the influence of tube material, microstructure, and heat treatment on process responses of tube hydroforming has been studied. One of the most important parameters in performing a successful tube hydroforming process is the selection of appropriate material for tubes. In the analysis section, effective parameters for the selection of an appropriate tube material for the hydroforming process have been investigated; it was concluded that higher strain hardening exponent (n), elasticity modulus (E), and anisotropy index (R) can enhance formability in this process; and the effects of microstructure and heat treatment on the formability of ASTM C11000 copper and ASTM AA1050 aluminum have been investigated. Consequently, four different heat treatment processes, which had different heating temperatures and durations, were selected, in addition to different cooling methods for each of the materials. In the experimental tests, the effects of these heat treatment methods on maximum bulging height, thickness strains, and final forming pressures were scrutinized. The effects of heat treatment on copper microstructure were also studied through metallographic tests; on the other hand, the effects of microstructure on tube hydroforming process were justified. As a result of these analyses, two heat treatment methods, namely, heating to 450 and 350 °C for 15 min and cooling in water, were recommended for copper and aluminum, respectively. Using these methods and due to their consequent fine and homogenous microstructure, higher mechanical strength and increase in material formability was achieved by attaining higher thickness strain and bulging height values. Finally, after extracting the mechanical properties of the two materials and comparing them with each other, parameters of strength coefficient and strain hardening exponent were reported as two effective factors that would improve tube deformation by tube hydroforming process.  相似文献   

18.
在中国国家杰出青年科学基金资助项目“镁合金热态液力成形技术”、中国国家自然科学基金资助项目“轻体件高内压液力成形机理的研究”、“管材热态内压成形新方法及其机理研究”和“激光拼焊管内高压成形机理”、以及中国教育部高等学校博士学科点专项科研基金资助项目“镁合金热态内高压成形机理研究”共同资助下,开展内高压成形机理及关键技术研究,在内高压成形塑性变形规律、起皱和破裂等失稳行为、提高成形极限和降低成形压力方法,以及液力胀接、热态内压成形和拼焊管内高压成形等方面取得重要进展,并在汽车和航天等领域实现内高压成形技术产业化应用,报告上述研究的理论和工程体系。 根据塑性变形特点,将内高压成形分为变径管内高压成形(IHPF of TPVD)、弯曲轴线管内高压成形(IHPF of TPCA)和多通管内高压成形(IHPF of TPB/BT)等3类,提出IHPF of TPVD由充填、成形、整形等步骤组成,IHPF of TPCA由弯曲、预成形、内高压成形等步骤组成,IHPF of TPB/BT由胀形、补料、整形等步骤组成。以此为出发点,通过实验和理论分析,研究IHPF塑性变形规律与失稳行为。  相似文献   

19.
In this paper, experimental and numerical investigations on mechanical behaviors of SS304 stainless steel under fully reversed strain-controlled, relaxation, ratcheting and multiple step strain-controlled cyclic loading have been performed. The kinematic and isotropic hardening theories based on the Chaboche model are used to predict the plastic behavior. An iterative method is utilized to analyze the mechanical behavior under cyclic loading conditions based on the Chaboche hardening model. A set of kinematic and isotropic parameters was obtained by using the genetic algorithm optimization approach. In order to analyze the effectiveness of this optimization procedure, numerical and experimental results for an SS304 stainless steel are compared. Finally, the results of this research show that by using the material parameters optimized based on the strain-controlled and relaxation data, good agreement with the experimental data for ratcheting is achieved.  相似文献   

20.
Due to the high cost of hydroforming equipment, attempts have been made to model this process using bench testing. While tensile and twist compression tests have yielded promising results, they do not simulate any single metal forming process. In this study we investigated the use of expansion zone, guiding zone, and twist-compression tests to simulate hydroforming processes and evaluated various overbased sulfonates and organic friction modifiers performance. The amorphous overbased magnesium sulfonate improved the performance of the hydroforming oil in the expansion zone and provided no harm in the guiding zone, while the crystalline overbased calcium sulfonate provided no harm in the expansion zone and improved performance in the guiding zone. It was found that the friction modifiers tested display an antagonism, where, as the expansion zone performance increased, the guiding zone performance decreased. Additionally, we found in twist-compression testing that the initial coefficient of friction displayed a small correlation with the guiding zone test (from r = 0.26–0.47), while the failure time displayed a small correlation with the expansion zone test (r = 0.36–0.40).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号