首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
工艺参数对管材激光弯曲成形影响规律的研究   总被引:1,自引:0,他引:1  
管材激光弯曲成形是一种柔性金属塑性成形方法。将连续的激光光斑简化为一间歇跳跃的方形匀强面热源,并考虑材料性能参数与温度的相关性,建立了管材激光弯曲成形的热-机耦合有限元工艺仿真模型,对成形过程进行了数值模拟。有限元模拟结果表明:在其他条件不变的情况下,激光弯曲角度随激光功率的增大而增大,两者基本上成线性关系;弯曲角度随扫描速度的升高而减小,随光斑直径的减小而增大,但当光斑直径减小到一定程度后,弯曲角度开始减小;弯曲角度随扫描包角的增大而增大,当扫描包角为180°时,弯曲角度达到最大,弯曲角度随扫描包角的继续增大而减小;扫描次数与弯曲角度间成近似的线性关系,且第一次扫描管材产生的弯曲角度最大。  相似文献   

2.
板料激光弯曲成形是一种利用激光成形构件的柔性成形技术。以矩形板激光单次扫描成形的过程为研究对象,通过对有限元分析软件ANSYS进行二次开发,建立了基于扫描路径的动热源模型,并系统研究了各技术参数下激光弯曲温度场的动态变化。分析发现:(1)曲线扫描准稳态过程的温度峰值要小于同工况下直线扫描情况,且持续时间短暂,温度峰值不断跳跃;(2)相同工艺参数下,随着扫描路径曲率的增大,温度峰值及加热区温度梯度均减小,当扫描路径曲率继续增大时,温度峰值及加热区温度梯度却随之增大;(3)提高激光功率,降低扫描速度以及在恒定线能量密度下增大扫描速度,均使板料温度梯度增大,而增大光斑直径,温度梯度减小。  相似文献   

3.
以不锈钢钢板为研究对象,通过改变激光光束能量、光斑直径、机床扫描速度、扫描次数以及扫描路径对不锈钢钢板进行弯曲试验,研究了厚度一定的不锈钢钢板弯曲成形时的工艺参数对弯曲角度的影响,并对热应力弯曲成形的工艺参数进行评估。  相似文献   

4.
The effect of passive water cooling in laser forming of thin sheets made of AISI 304 stainless steel is experimentally investigated. Indeed, since each laser scan can produce only small bending angles, multiple laser scans are required to produce a given deformation with a significant increase of production time due to cooling between consecutive scans. Therefore, passive water cooling is tested to verify its influence on minimum time between consecutive scans (cooling time), bending angle, and surface quality. A parametric approach is involved in the investigation and main process parameters are changed among the experiments by varying laser scanning speed, laser beam power, sheet thickness, and cooling media among several levels. It was discovered that the employment of passive water cooling in laser forming of thin sheets would be beneficial since the capability to dramatically reduce the cooling time and oxidation of both irradiated and cooled surfaces. In addition, the bending angle is only marginally affected by employment of water cooling. The effect of water cooling on stress and deformations are discussed by developing a numerical model based on finite element model.  相似文献   

5.
硅片激光弯曲成形的数值模拟与实验   总被引:1,自引:1,他引:0  
介绍了一种利用脉冲激光塑性化弯曲单晶硅片的新方法。在分析和描述光脉冲时空特性的基础上,运用有限元分析软件ANSYS对硅片弯曲过程进行建模仿真,得到了脉冲激光弯曲过程中温度场与应力应变的仿真结果。对脉冲激光作用过程中温度场与应力应变的周期性瞬间变化特征进行了描述,指出了脆性材料硅片的脉冲激光弯曲机理不属于简单意义上的温度梯度机理或屈曲机理,而是二种机理共同作用的结果。通过6次扫描试验实现了对硅片的有效弯曲,弯曲角度达6.5º,仿真结果与验证性试验相符。  相似文献   

6.
王懋露  杨立军  王扬 《中国机械工程》2014,25(12):1672-1675
为了实现等离子电弧加热的精确弯曲成形,采用等离子电弧沿直线对1Cr18Ni9Ti不锈钢板材进行加热弯曲成形试验,并用CMOS1303uc数字相机等硬件和相关软件在等离子电弧加热弯曲成形的过程中对弯曲角度进行实时检测,实现了对成形过程的闭环控制。试验结果表明:当扫描次数较少时,板材弯曲角度随扫描次数增加近似呈线性增大;当扫描次数较多时,由于增厚效应的影响,单次扫描弯曲角度的增量会不断减小,弯曲效率明显降低。为了确保加工过程的可靠性并提高成形效率,根据加工余量的不同将成形过程分为粗、中、精三个加工阶段,各个阶段分别采用不同的工艺参数进行加工,通过弯曲角度分别为20°和30°的不锈钢薄板的成形试验验证了该方法的有效性。  相似文献   

7.
Laser shock bending is a sheet metal micro-forming process using shock waves induced by a nanosecond-pulsed laser. It is developed to accurately bend, shape, precision align, or repair micro-components with bending angles less than 10°. Negative bending angle (away from laser beam) can be achieved with the high-energy pulsed laser, despite the conventional positive laser bending mechanism. In this research, various experimental and numerical studies on aluminum sheets are conducted to investigate the different deformation mechanism, positive or negative. The experiments are conducted with the sheet thickness varying from 0.25 to 1.75 mm and laser pulse energy of 0.2 to 0.5 J. A critical thickness threshold of 0.7-0.88 mm is found that the transition of positive–negative bending mechanism occurs. A statistic regression analysis is developed to determine the bending angle as a function of laser process parameters for positive bending cases.  相似文献   

8.
采用数值模拟和实验研究分析了厚钢板激光多次扫描弯曲成形过程中弯曲角度与激光扫描次数之间的关系。建立三维热力耦合有限元模型计算了成形过程的温度场、应力场和弯曲角度的变化,对不同厚度钢板的激光多次扫描弯曲成形过程进行了实验研究,模拟结果与实验结果符合较好。在相同的工艺参数条件下,钢板越厚,弯曲角度越小。钢板弯曲角度随激光扫描次数的增加而增大,但对不同厚度钢板,它们的变化规律不同。钢板下表面的应变强化是多次扫描过程中随扫描次数增加而弯曲角度增量减小的主要原因。  相似文献   

9.
NUMERICAL SIMULATION FOR LASER BENDING OF SHEET METAL   总被引:4,自引:0,他引:4  
0INTRODUCTIONLaserbendingofsheetmetalisanewflexibleformingtechnologyinrecentyears,whichdependsononlynonuniformheatingbutnot...  相似文献   

10.
The paper presents an analysis of the influences of the dominant parameters of the pulsed Nd:YAG laser seam welding process on the static behaviour of the welds. These parameters include average peak power density (APPD), mean laser power, traverse speeds, pulse duration, and pulse shapes. Three typical temporal pulse types – ramp-up, ramp-down, and "rectangu-lar" power pulses were used in this study. Laser seam welds were produced in 0.7 mm thick electrogalvanised steel sheets. A number of destructive tests of pulsed Nd:YAG laser welded zinc-coated steel sheet have been carried out to characterise the static properties of welds including hardness, bending strength, and ductility. An experimental study of acceptable welds revealed that the hardness was affected only by the traverse speed. The bend strength was increased with decreas-ing travel speed and increasing pulsed laser parameters. It was found that the operating parameters have no effect on the tensile strengths of the welds.  相似文献   

11.
Process simulation and optimization of laser tube bending   总被引:1,自引:1,他引:0  
A 3D thermomechanical finite element analysis model for laser tube bending is developed based on the software MSC/Marc. The processes of single- and multi-scan are analyzed numerically. The gradient and development of the temperature between the laser scanning side and the nonscanning side leads to the changing complexity of the stress and strain. Consequently, the length of the laser scanning side becomes shorter than that of nonscanning side after cooling. The length difference between both sides makes the tube produce the bending angle. The relationship between the number of scans and the bending angle is about in direct ratio. The bending angle induced by the first irradiated time is largest. Meanwhile, the finite element simulation is integrated with the genetic algorithm. Aiming at different process demands, corresponding objective functions are established. Laser power, beam diameter, scanning velocity, and scanning wrap angle are regarded as design variables. Process optimizations of maximum angle bending and fixed angle bending after single laser scan are realized. Groups of optimized process parameters can be obtained according to different optimization objectives. The bending angle can approach to the maximum when the laser power, spot diameter, scanning velocity, and scanning wrap angle are 381.24 W, 3.37 mm, 16.34 mm/s, and 123.1°, respectively. When the laser power, spot diameter and scanning velocity are 426.12 W, 4.9 mm, 14.31 mm/s respectively, a fixed angle bending can be achieved.  相似文献   

12.
Overhanging surface is inherent geometric restraint during selective laser melting (SLM), which is suitable for various complex parts fabrication. In order to improve the fabricating quality of overhanging surface, a series of experiments were designed to investigate the effects of inclined angle, scanning speed, laser power, accumulated residual stress, and scanning vector length on overhanging surface fabrication. Analysis found that overhanging surface would warp easier when the inclined angle and the scanning speed became smaller and the warping trend will be larger as the laser power became larger. The relationships of laser power, scanning speed, and the critical inclined angle were mutual restraint, that is, larger inclined angle will be designed when the laser power becomes larger and scanning speed gets smaller, or vice versa: the selection of the fabricating parameters will be determined by established inclined angle of the overhanging surface. More serious warp would happen as the processing layers increased as a result of residual stress accumulation, and it was found that longer scanning vector were more helpful to stress accumulation, leading to more serious warp than shorter vector. At last, two effective methods were adopted to optimize overhanging surface fabrication, including adjusting part orientation to improve the inclined angle at the key position, and controlling regional parameters to reduce energy input. Above two ways were adopted to manufacture complex parts with typical overhanging surface, the results proved that adjusting part orientation and controlling regional parameters were effective ways to improve the fabricating quality of overhanging surface. In this study, the basis for building overhanging surface by SLM was provided from the view of process and design, and the preliminary solutions were proposed to manufacture complex metal parts with lower risk.  相似文献   

13.
To study the regular pattern of vapor-to-melt ratio in laser cutting sheet metal, a physical model of vapor-to-melt ratio is developed to demonstrate the material remove forms of vaporization-melt in cutting area and the state of energy and mass flow in the molten layer. Variation of vapor-to-melt ratio with laser power and cutting velocity is obtained by laser cutting of 6063 aluminum alloy sheet. The 0.5-mm sheet thickness is carried out on a JK701H Nd:YAG pulse laser cutting system by simulating under the regression correction of cut radius. Observation on the cut samples with different parameters (65 W, 85 W, 105 W varied with laser power increasing, and 2.2 mm/s, 2.0 mm/s, 1.8 mm/s with decreasing of beam cutting speed) and the calculations show that vapor-to-melt ratio increases (0.595–1.995, 0.672–2.631, 0.787–4.171) with laser power (65 W–110 W) and decreases with cutting velocity (1.8 mm/s–2.4 mm/s). At the same time, the laser cutting quality increases with vapor-to-melt ratio and the decrease with thickness of residual molten layer. The results show good agreement between vapor-to-melt ratio model and experiments. The analysis verifies that this model is feasible and it makes contribution to laser precision cutting.  相似文献   

14.
CO2连续激光弯曲硼硅酸盐玻璃薄片实验研究   总被引:1,自引:1,他引:0  
利用CO2连续激光对硼硅酸盐玻璃薄片进行了弯曲试验,研究了激光功率(P)、扫描速度(V)、扫描次数(n)及样品宽度(d)对弯曲效果的影响,并简要分析了弯曲现象产生的原因。给出了弯曲加工的P,V范围图,获得多组可以成功弯曲玻璃样品的工艺参数。实验结果表明,采用CO2连续激光可以对硼硅酸盐玻璃薄片进行弯曲加工,弯曲角度可达24°以上。  相似文献   

15.
随着快速成形(RP)技术的进步,使用直接金属激光烧结(DMLS)技术加工金属粉末得到广泛关注。针对DMLS技术快速制造的特点,研究讨论了表面张力、粉末颗粒大小及分布、辅助材料的添加等粉末特征以及激光功率、扫描速度、扫描间距、铺粉厚度、扫描策略等工艺参数对烧结质量的影响,并对DMLS技术的发展方向作了简要分析。  相似文献   

16.
为研究雷达功率组件金刚石微通道热沉的加工难题,开展了飞秒激光加工多晶金刚石微流道的工艺研究,仿真模拟了飞秒激光作用于金刚石表面的温度场分布,以及诱导去除过程,理论与实验研究了金刚石的烧蚀阈值,系统研究了激光能量、扫描速度、扫描次数、焦点位置等参量及其优化工艺参数对金刚石微槽尺寸的影响规律.结果表明:当飞秒激光功率大于0...  相似文献   

17.
During laser cleaving of brittle materials, with the controlled fracture technique, thermal stresses are generated which induce the crack and extend it along the cutting path, subsequently causing material separation. One of the problems in laser cutting of glass with this technique is the cut path deviation at the leading and the trailing edges of the glass sheet. Previous work with a continuous beam diode laser has shown the deviation to be partly due the high magnitudes of thermal stresses generated near the edges of the sheet. This paper reports on the effects of using a pulsed diode laser to cut soda lime glass. The effect of pulse parameters and cutting speed on the quality output variables such as cut deviation angle and surface finish are studied. Finite element modelling is also used to simulate the effects of the moving beam on stress generations to facilitate the understanding of the process mechanisms, and the results are compared with the experimental data. This work shows how to minimise the cut path deviation at the edges by reducing thermal stresses using optimum pulsed diode laser parameters and providing additional flexibility to the process.  相似文献   

18.
在综合分析了材料的热物理性能和力学性能随温度变化影响的基础上,建立了板料激光弯曲成形的三维热力耦合模型.对1Cr13不锈钢钢板的激光单次扫描弯曲过程进行了数值模拟,得到了形变场、温度场以及应力场模拟结果,并对其变形过程和变形机理进行了分析.  相似文献   

19.
板料激光弯曲成形是一种利用激光成形工件的柔性成形技术。研究激光成形过程中板料变形与扫描路径之间的关系对该技术的应用尤为重要。文章以板料激光扫描成形过程为研究对象,对激光曲线扫描中较为普遍的正弦路径进行了有限元模拟分析。结果表明,在相同工艺参数下,正弦扫描时,光斑在板料边缘停留时间相对较长,温度峰值攀升更为迅速;由于板料成形中只受热应力作用,变形区域的形状、大小与扫描路径有关。由于约束的影响,正弦扫描成形时,板料加热区表现为一个半径较大的圆弧状区域,并且由于板料中间部位受到的刚端抑制作用相对较大,使两端产生翘曲。随着弦高的减小,翘曲现象减轻,渐呈准直线。  相似文献   

20.
金属板件等离子体弧柔性成形热过程计算与分析   总被引:2,自引:1,他引:2  
建立了金属板件等离子体弧柔性成形的热过程数学模型,计算并分析了成形过程中板材的热物理参数、几何尺寸、等离子体弧扫描速度、冷却条件等因素对成形零件的温度场分布的影响规律。研究发现:在一定的成形条件下,可实现成形的板材厚度存在极限值;在保证板材表面温度足够高的前提下,采用较高的扫描速度仍可以获得较好的成形效果,而引入冷源,可更好地控制板件最终形状。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号