首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of partial substitution of light rare earths for Sm in (Sm1-xRx)2 (Co,Fe,Cu,Zr)17 have been investigated where R=Ce, Pr, Nd, Pr0.5Nd 0.5, Ce0.2Pr0.4Nd0.4 and x=0-0.5. Experiments show that both remanence and maximum energy product are improved for x=0.1-0.2, depending upon compositions and heat treatments. For a composition Sm0.8R0.2(Co0.633Fe0.286 Cu0.061Zr0.020)7.59 with R =Ce0.2Pr0.4Nd0.4, the authors obtained Br=11.57 kG, MHc =15.5 kOe, BHc=10.33 kOe, Hk=10.03 kOe, and (BH)max=30 MGOe  相似文献   

2.
The coercivity of the melt-spun pseudobinary (NdFe10Cr 2)1-x (Nd2B)x alloys, in which Nd2B represents a composition of Nd0.67B0.33, was systematically studied. It was found that significant coercivities are possible with optimal additions of the Nd-B composition at x=0.5-0.7. The as-spun (substrate velocity=10 m/s) coercivity increased from 0.1 kOe at x=0.0 to maxima of 7.0 and 7.5 kOe at x=0.5 and 0.7, due to the Nd2 Fe14B and a new Fe-Nd phase, respectively, as evidenced from thermomagnetic analysis and X-ray diffraction. Annealing the overquenched amorphous x=0.7 alloy led to the crystallization of the Nd2Fe14B phase, and a coercivity of 8.5 kOe was obtained  相似文献   

3.
新能源汽车的高速发展,需要能稳定工作在120℃~200℃温度区间的永磁材料。居里温度为476℃、各向异性场为14.7 T的Sm2Fe17N3,具有优良的本征磁性能,可应用在这个温度区间。为了提高Sm2Fe17N3粉体的磁性能,必须将颗粒的粒径减小到临界单畴尺寸以实现高各向异性场;同时,还要避免颗粒尺寸减小产生的表面氧化,以保证高剩磁和最大磁能积。粉体破碎、机械合金化、甩带、薄带连铸、还原扩散以及表面镀覆等多种制备工艺,可用于制备高性能Sm2Fe17N3。目前,实验室制备的Sm2Fe17N3粉体的矫顽力和最大磁能积已经达到28.1 kOe和43.6 MGOe。本文评述近年来Sm2Fe17N3粉体制备的研究成果,包括对制备机理的系统总结并提出仍待解决的关键问题:Sm2Fe17N3粉体的矫顽力、剩磁等与其颗粒尺寸的量化规律以及与颗粒磁畴结构的关联机制;对NH3/H2混合气体中H2对提高氮化效率的作用机制仍需探索;进一步开发在低氧环境下的颗粒粒径均匀化、控制形貌的二次破碎技术;对于还原扩散法,开发适合规模化应用的新前驱体及其制备方法以及快速去除钙副产物的水洗技术等。  相似文献   

4.
W-type Pb-hexaferrites were prepared by standard ceramic methods. The lattice constants found by refinement were a=0.59140±0.00006 nm and c=3.29209±0.00041 nm. The X-ray density of a typical composition PbZn1.9Fe15.3O25.8 was ρ=5.32 g/cm3 and the Vickers microhardness value h v=6 kN/mm2. A plot of the saturation magnetization versus temperature is given. The extrapolated value of the saturation magnetization (H→∞, T→0) was σs=108 emu×g-1, and the Curie temperature was Tc=600±20 K  相似文献   

5.
Sm5Fe17 bulk materials, one of the newer permanent magnetic materials, were successfully produced by the spark plasma sintering method. The resultant bulk materials had high densities of 85–98%. When obtained by sintering at relatively lower temperatures, the Sm5Fe17 bulk materials consisted of the Sm5Fe17 and SmFe3 phases, whereas they contained some -Fe phase together with the Sm5Fe17 and SmFe3 phases when obtained by sintering at relatively high temperatures. High coercivity values, exceeding 2 MAm−1, were found in the Sm5Fe17 bulk materials consisting of the Sm5Fe17 and SmFe3 phases.  相似文献   

6.
Magnetic properties of SmFe10(Ti,M)2 melt-spun ribbons were studied, where M is V, Cr, Mn, and Mo. The ribbons (M=V/Cr/Mo) quenched at 20 m/s exhibit the high coercivities of 4.2-5.5 kOe. Annealing the ribbons quenched at 40 m/s enhances their coercivities in the range of 5.9-10.0 kOe. In particular, SmFe10 (TiV) and SmFe10(TiCr) ribbons yield coercivities of 10.0 kOe and 7.9 kOe, respectively. This is the highest value among the reported melt-spun ThMn12-type structure ribbons. The importance of Sm atmosphere during annealing in minimizing the Sm evaporation from ribbons is also demonstrated  相似文献   

7.
Ni2+ and Co2+ substituted Mn-Zn ferrites have been developed as high-density magnetic recording materials by hot pressing using optimum sintering parameters. Ferrite series of the composition Mn0.6Zn0.4-xNixFe2 O4 and Mn0.6Zn0.4-yCoyFe2O4 were prepared by the hot-pressing technique wherein x and y varied from 0.0 to 0.4 in steps of 0.05. It yielded ferrites with improved magnetic properties having higher hardness (⩾650 Vickers units), low porosity (<0.1%), and small grain size (≈10 μm). The initial permeability increased, whereas the coercive field decreased for an Ni2+ concentration x or a Co 2+ concentration y equal to 0.05. Maximum values of saturation magnetization equal to 4850 and 5250 G were obtained for x and y equal to 0.225 and 0.275, respectively. The Curie temperature increased appreciably, whereas the DC resistivity decreased for a larger substitution of Ni2+ and Co2+ ions  相似文献   

8.
Several alloys in the SmFe11Ti-Sm2TM17 (TM=Co/Fe/Cu/Zr) pseudobinary system containing O-90 wt.% Sm2TM17 were prepared by the melt spinning technique. A maximum as-spun coercivity of 4.6 kOe was obtained for the alloy containing 10 wt.% Sm2TM17 at a substrate velocity of 15 m/s. The coercivity is enhanced to 5.3 kOe after annealing at 800°C for 1 h. XRD (X-ray diffractometry) and TEM (transmission electron microscopy) were used to investigate the microstructure of the alloys. It is suggested that the grain refinement, doping of the 1-12 phase with Sm and other elements, and reduced free iron might be the main causes coercivity enhancement  相似文献   

9.
Fine ceramic powders of Sr0.9Ca0.1Zn2 Fe16O27 (Sr0.9Ca0.1Zn 2-W) ferrite, of almost single domain grain size ~1 μm, have been synthesized successfully by sintering for a few hours a mixture of SrCO3, CaCO3, ZnO, and α-Fe2 O3 in stoichiometric amounts at an effectively low temperature (Ts) of ~1100°C. Carbon dioxide evolves in the reaction Sr(Ca)CO3+2ZnO+8 α-Fe2D3 &lrarr2;Sr(Ca)Zn2Fe16O2+C2 , making fine pores in the sample, which prevent large grain growth of the material and result in a very loose powder. The small ⩽10% substitution of Sr by Ca activates the reaction, but preserves the crystallization of the small-sized grains. This yields magnetic properties useful for most permanent magnet applications, with a promisingly high coercivity Hc~3650 Oe and saturation magnetization Ms~65 emu/g. A considerably better saturation magnetization Ms~85 emu/g can be obtained by sintering the samples at higher Ts~1300°C, but that results in a rather very low coercivity Hc~105 Oe  相似文献   

10.
The temperature dependence of magnetization in Sm3Fe 20Cx (x =0.3, 0.6, 0.8) and Sm2Fe16.5C1.0 intermetallic compounds with rhombohedral structure has been analyzed using molecular field theory. On the basis of a two-sublattice model, the molecular field coefficients are calculated using a numerical fitting method. The Curie temperature and the Fe-Fe, Sm-Fe, Sm-Sm magnetic interaction energies for the compounds are determined from these coefficients. The results show that the increase of the Curie temperature (Tc) with the increase of carbon content x is attributed mainly to the enhancement of the Fe-Fe exchange interaction energy caused by carbon atoms added  相似文献   

11.
Electron microscopic studies of as-cast Sm(Co,Fe,Cu,Zr)9 magnets revealed a hexagonal phase of the type Sm2(Co,Fe,Cu,Zr)17 with crystal lattice parameters of a=0.84 nm and c=3.2 nm. After a solid solution treatment, only rhombohedral (3R) and hexagonal (2H) grains were found. After an additional annealing treatment at 800°C, grains with a microcellular precipitation structure similar to the one found in Sm(Co,Fe,Cu,Zr)7.5 magnets occurred. In addition, in the as-cast and after-aged samples, other, partly unidentified Cu- or (Co,Fe)-enriched phases were detected  相似文献   

12.
(Tb20Fe65Co15)94Cr 6 film shows high corrosion resistance with good magnetooptical properties, Hc=4.9 kOe, &thetas;k=0.3°, Ku=1.4×106 erg/cm3 and Tc=230°C. Pit corrosion in 1N-NaCl aqueous solution and wet corrosion in 85°C and 85%RH atmosphere were studied for TbFeCo films with and without Cr addition. It is suggested that pit corrosion occurs by a chemical reaction between the anodic pit wall and the cathodic film surface, resulting in a piling up of corroded products inside the pits. On the other hand, wet corrosion in TbFeCo and TbFeCoCr films shows a bubble-chain-like morphology similar to conventional filiform corrosion observed in a coated film. This seems to take place by discontinuous movement of the anodic reaction area ahead of the bubbles  相似文献   

13.
Detailed microstructural characterization of magnets and homogenized as-cast alloys, which included X-ray diffraction Rietveld analysis, has indicated that the so-called platelet or lamellae phase is (SmZr)1(CoFeCu)3 with the PuNi3 structure and lattice parameters a~0.5 nm and c~2.4 nm. The structural and magnetic properties of the (SmZr)Co3 phase were investigated. The microstructure shows two phases differing in their Zr/Sm ratio. Magnetization curves for the samples (Sm0.33Zr 0.67)Co3, (Sm0.33Zr0.67)Co 2.97Fe0.03, and (Sm0.67Zr0.33)Co3 are consistent with the two-phase microstructure observed. Room temperature coercivity values of these samples are low (ap1 kOe.)  相似文献   

14.
In high fields where the magnetization is approaching saturation, the resolved magnetic polarization I can be expressed by a power series of the inverse of external field H as: I=Is-b/H 2-c/H3 . . ., or alternatively in terms of the reversible permeability μrev=1+(2b/H3+3c/H4+ . . .)/μ0 where Is is the spontaneous magnetic polarization and b, c, are constants. These equations express the law of approach to saturation magnetization. The coefficient b for a cubic crystal has been deduced as b=0.0762/Is[K+1.5(λ100111)σ]2, where σ is the applied stress and others are magnetic constants. The values of reversible permeability μrev under biasing field H were measured for carbon steels with applied stresses. The results showed that the square root of 2b changed linearly with the applied stress, The values of magnetic constant K andλ100111 were calculated, They agreed with the standard values, but were affected by chemical composition and heat treatment of materials, especially in λ100111  相似文献   

15.
The quantized Hall resistances, RH(4), of Si MOSFETs were measured at ≈0.5 K in a magnetic field of 15 T. The value of RH(4) was determined in terms of the Commonwealth Scientific and Industrial Research Organization (CSIRO) realization of the SI ohm. A weighted mean of three determinations gave a value for the quantity RH(4) of (6453.203,36(52)) ΩSI-NML which can also be expressed as 6453.2(1.000,000,52(8)) ΩSI-NML. This RH (4) value gives a value for h/e2 which is about 0.3 p.p.m. larger than the value for h/e2 derived from the anomalous moment of the electron, using the quantum electrodynamics (QED) theory  相似文献   

16.
The cold-rolled and recrystallization textures of Fe-Cr-Co-Mo permanent magnet alloys are described. The studied composition is Fe-30%Cr-15%Co-3%Mo (in wt.%). The cold-rolled texture can be considered to be {111}<110>, {111}<112>, {100}<110>, and {211}<110>, while the recrystallization texture can be considered to be {111}<100>, {110}<112>, {211}<110>, and {110}<110>. The secondary recrystallization is caused by heat-treating the alloys in the sequence of α, α+γ, α+γ+σ, α phase region. This results in a favorable texture of {110}<110> and <100> direction, aligning along the transverse direction (TD) of the strips. The best magnetic properties obtained in this study were 1.2 T (12.0 kG), iH c=82.0 kAm-1 (1025 Oe), and (BH)max= 60.8 kJm-3 (7.6 MGOe) with TD alloys  相似文献   

17.
γ-Fe2O3 particles (L≈0.15 to 0.2 μm, L/D≈2 to 5) with coercivity up to 400 Oe have been prepared from oxalic precursors. To preserve the particle form, the oxalates were doped with boron. The effects due to this element was studied during the different thermal treatments which effect the pseudomorphous transformation of oxalate particles into spinel ferrite. ESCA spectroscopy, and X-ray measurements could point out the presence of a Fe3BO5 phase at the surface of γ-Fe2O3 particles. In spite of the important mass losses (H2O, CO, CO2) and the important crystallographic structure modifications occurring during the transformation of oxalate into magnetic oxide, γ-Fe2O 3 particles obtained by this method have very good textural characteristics. Boron-doped γ-Fe2O3 particles were used to make 3.5-in diskettes with standard formulation. In these conditions, media properties were comparable to trading diskettes properties  相似文献   

18.
The magnetic properties of single crystals of GdBa2Cu 3O7 were investigated in a magnetic field of up to 20 T applied parallel to the c axis in the 1.7-300 K temperature range. In the superconducting state, the field and temperature dependences of the critical current densities were deduced from the hysteresis of the half-cycle using Bean's critical state model. The Gd3+ paramagnetic moment was then studied. Above about 20 K, the M(H) isotherms were found to be given, at different temperatures, by the Brillouin function of the free Gd3+ ion. Below 20 K, the average magnetization does not obey the Brillouin law. The normal-state susceptibility was described by the free-ion Curie-Weiss law  相似文献   

19.
The quantum Hall effect is being used to monitor the US legal representation of the ohm, or as-maintained ohm, ΩNBS. Measurements have been made on a regular basis since August 1983. Individual transfers between the quantized Hall resistance R H and the five 1-Ω resistors which comprise ΩNBS can be made with a total of one standard deviation (1σ) uncertainty of ±0.014 p.p.m. This uncertainty is the root-sum-square of 32 individual components. The time-dependent expression for RH in terms of ΩNBS is: RH=25812.8[1+(1.842±0.012)×10-6 =(0.0529±0.0040)(t-0.7785)×10-6 /year] ΩNBS, where t is measured in years from January 1, 1987. The value of ΩNBS is, therefore, decreasing at the rate of (0.0529±0.0040) p.p.m./year  相似文献   

20.
Nd2Fe14BHx, x⩽5, hydride powders, with particle size as small as 1 μm, have been successfully prepared using a chemical method derived from the well-known oxide-reduction diffusion (ORD) method. In this method, the raw materials (Nd2O3, iron and boron) are mixed with calcium metal or hydride powder (in excess) and additions of anhydrous CaCl2 and NaCl, and finally sintered at 1170-1270 K for a few hours under an argon atmosphere. This yields finely divided Nd2 Fe14B crystallites embedded in the byproducts. The material is then washed with water at room temperature, where the excess Ca in the mixture reacts with water and produces nascent hydrogen, which reacts with the alloy particles embedded in the byproducts, and finally yields a well-separated Nd2Fe14BHx, x⩽5, hydride powder. Thermal stability, crystalline structure, and magnetic properties of several hydrided powders are studied systematically. These studies show that the interstitial hydrogen atoms led to 1) an increase in the lattice volume by as much as 4.2%, 2) a decrease in the coercivity to almost zero, 3) a dramatic improvement in TC from 593 to 642 K, and 4) a substantial modification of the magnetization process, showing magnetic saturation at lower fields of ≈60 kOe (against ≈150 kOe in anhydride)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号