首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了提高奥氏体不锈钢的表面硬度并保持其良好的耐蚀性,采用自主开发的低温渗碳工艺对AISI316奥氏体不锈钢进行渗碳处理。运用金相显微镜和显微硬度计表征了渗碳强化层组织,通过电化学试验检测了渗碳强化层的耐蚀性。结果表明:渗碳温度越高,渗碳强化层表面硬度越高,耐蚀性越差;经过470℃低温渗碳处理的AISI316奥氏体不锈钢表面硬度从原来的300 HV0.25 N增加到800~1 000 HV0.25 N,有效硬化层达36.1μm,而其耐蚀性保持不变。  相似文献   

2.
奥氏体不锈钢离子渗碳后的腐蚀行为   总被引:1,自引:0,他引:1  
为了提高奥氏体不锈钢零件的使用寿命,利用低温离子渗碳技术对AISI 316L奥氏体不锈钢进行了表面渗碳处理.用X射线衍射仪和光学显微镜分析了渗碳层的微观组织结构,用显微硬度计测试了渗碳层的硬度分布,通过电化学极化曲线测试技术和化学腐蚀试验研究了离子渗碳AISI 316L不锈钢的腐蚀行为.渗碳层为单相碳过饱和奥氏体固溶体,由此明显提高了AISI 316L不锈钢的抗腐蚀性能,渗碳层硬度梯度平缓,表面显微硬度高达900 HV.结果表明,奥氏体不锈钢低温离子渗碳处理不仅提高了其表面硬度,而且提高了不锈钢表面的耐腐蚀性能,从而提高了其使用寿命.  相似文献   

3.
杨闽红  李朋  潘邻  张良界  董根成 《材料保护》2012,45(7):60-61,76
奥氏体不锈钢硬度低,使用寿命短,表面附着的钝化膜妨碍了其低温渗碳。采用电镀纯铁和氟化法对其表面进行处理,去除表面钝化膜后,500℃气体渗碳。结果表明:氟化处理比电镀纯铁去除钝化膜的效果好,2种前处理后低温气体渗碳层表面硬度均有明显提高,可满足构件硬度为600~800 HV的需求;渗碳层厚度均匀,耐蚀性略有提高。  相似文献   

4.
不锈钢等离子渗碳工艺及渗层组织和性能的研究   总被引:3,自引:0,他引:3  
卢金斌  马丽 《材料保护》2007,40(2):35-37
采用渗碳工艺能够提高不锈钢的耐磨性,但不锈钢表面钝化膜的存在使一般渗碳工艺较难进行.采用离子渗碳工艺对1Cr18Ni9Ti进行了试验和渗后力学性能的研究,结果表明,等离子渗碳速度快,经等离子渗碳后炉冷、渗层碳浓度梯度平缓,表层维氏硬度为600~625 HV,过渡层维氏硬度为370~450 HV,表层和过渡层组织为细小粒状碳化物 奥氏体,心部主要为奥氏体,渗层耐磨性好,基体力学性能优良.  相似文献   

5.
李楠  叶芳霞  钟黎阳 《材料保护》2015,48(3):61-63,9
传统的固相渗碳法渗速慢,加入催渗剂会产生阻挡层,且渗层质量不易控制.常用的渗碳工艺如离子渗、气体渗和盐溶渗均存在一些不足.采用一种新型固相渗碳方法用灰口铸铁HT300中的片状石墨对2Cr13不锈钢进行表面改性,用XRD、SEM、微观硬度计、ML-100干式销盘两体磨料磨损试验机等分析了新型固相渗碳层的物相组成、微观组织、微观硬度和耐磨性,使用CS350电化学工作站测试了其耐蚀性能.结果表明:在1 120℃保温10 h,850℃保温1h条件下固相渗碳,可在2Cr13不锈钢表面原位生成碳化铬颗粒.原位反应层主要分为两个区域:晶界碳化物细小断续区和晶界碳化物粗大连续区,显微硬度呈梯度分布,最高可达1 082 HV1N.渗碳后表层耐磨性提高了4倍,耐蚀性能有所下降.  相似文献   

6.
采用低温等离子体氮化技术,对304奥氏体不锈钢进行表面氮化处理。运用XRD、SEM、金相技术和显微硬度计等分析手段对氮化层的物相组成及表面硬度进行分析及测量;利用球-盘摩擦实验在干摩擦条件下对氮化层的摩擦磨损性能进行测试并分析磨损机理。结果表明:304奥氏体不锈钢经低温等离子体氮化处理后,形成单一高氮面心立方相γN,显微硬度及耐磨损性能均明显提高,摩擦系数减小;氮化压力为10 Pa时,渗氮层具有最高的表面显微硬度850HV0.025及较好的耐摩擦磨损性能。  相似文献   

7.
采用低温等离子体氮化技术,对AISI304不锈钢进行表面氮化处理。考察了离子能流密度对不锈钢氮化层性能的影响。运用X射线衍射、扫描电镜和显微硬度计等分析手段对氮化层的物相组成及表面硬度进行分析及测量;利用球-盘摩擦实验在干摩擦条件下对氮化层的摩擦磨损性能进行测试。结果表明:AISI304不锈钢经低温等离子体氮化处理后,形成单一高氮面心立方相γN。在氮化处理过程中,离子能流密度受工作压力及基片负偏压影响较大。离子能流密度变化能显著影响不锈钢氮化层的摩擦性能,随着离子能流密度的增加,氮化层显微硬度增大,摩擦系数减小,耐磨损性能上升。  相似文献   

8.
不锈钢具有良好的耐蚀性、韧性和可加工性,但其硬度低、耐磨性差,严重制约了其在有磨损腐蚀要求环境体系中的应用.为了提高不锈钢的抗磨损性能,通过低温活性盐浴表面处理技术提高其耐磨性的同时不降低其耐蚀性,使得其在具有磨损的腐蚀介质环境中能够提高其抗磨损性能而不被腐蚀,可延长其使用寿命.本文系统地介绍了低温活性盐浴表面氮化处理技术的发展、原理及应用和处理后表面氮化层的特点、组织和表面性能.低温活性盐浴表面处理后,表层活性N原子扩散在奥氏体间隙中形成过饱和固溶体的S-相,产生特殊的位错-应力FCC结构,使得奥氏体晶格发生严重变形,不但提高了其腐蚀性,同时大大提高了其硬度,使得不锈钢硬度能够达到1 000 HV0.1,其抗磨损性能亦得到了显著提高.  相似文献   

9.
采用低温等离子体辅助氮化奥氏体不锈钢316L,能够在不破坏其抗腐蚀性能的同时有效提高不锈钢表面的摩擦学性能,研究了不同脉冲偏压下氮化层的结构和摩擦学性能(硬度、摩擦系数和耐磨性)。采用X射线衍射仪研究了脉冲偏压对氮化层相结构的影响;采用光学显微镜和扫描电镜分别观察了氮化层表面和横截面的形貌,并利用能量色散谱测量了氮化层中氮含量及其分布;基于纳米压痕和摩擦磨损结果,研究了脉冲偏压对氮化层摩擦学性能的影响。结果表明:低温氮化后,不锈钢表面形成一层无氮化物析出的单一过饱和固溶体相——扩展奥氏体γN,晶格常数随偏压的增加由0.359增至0.395nm。当脉冲偏压为-300 V时,氮化层厚度达9.45μm,表面硬度达21.0 GPa,摩擦系数降低至0.09,耐磨性能获得显著提高。  相似文献   

10.
表面纳米化对316L不锈钢性能的影响   总被引:7,自引:0,他引:7  
对316L不锈钢进行表面机械研磨处理(SMAT),研究表面组织变化对其硬度和在0.5 mol/LNaCl介质中腐蚀性能的影响.结果表明:通过SMAT可以在316L不锈钢表面制备出纳米结构层,随着处理时间的增加,表面纳米晶组织逐渐由单一的奥氏体相过渡到奥氏体与马氏体两相共存;表面纳米化和马氏体相变能够明显地提高316L不锈钢的表层硬度,使表面粗糙度略有下降;表面机械研磨处理降低了316L不锈钢在0.5mol/L NaCl腐蚀介质中的耐蚀性能.因为316L不锈钢表面纳米晶组织容易钝化,形成的钝化膜不稳定,提高了溶解速度.  相似文献   

11.
使用配备红外线加热炉的激光共聚焦扫描显微镜(CLSM)对3种不同碳含量的奥氏体不锈钢AISI 302,AISI 304,AISI 316L的碳化物沉积以及敏化过程进行了原位观察,同时研究了碳含量、加热温度以及时间与碳化物沉积以及敏化带宽度之间的关系,绘制出了不锈钢出现晶界碳化物沉积和敏化带的时间-温度曲线。结果表明:AISI 302,AISI 304不锈钢在600~1 000℃加热时均会出现晶界碳化物沉积,发生敏化现象,且碳含量高的AISI 302不锈钢相比碳含量低的AISI304不锈钢其晶界上更容易先形成碳化物沉积和发生敏化现象;当加热温度升高至1 100℃时,两种不锈钢的晶界碳化物沉积溶解,敏化带消失;AISI 316L不锈钢由于碳含量低,试验时间内未观察到晶界碳化物沉积和敏化现象;敏化带宽度随加热温度和不锈钢碳含量的增加而增加,随加热时间的延长则先增大后减小。  相似文献   

12.
目前,对AISI 316奥氏体不锈钢单一面心结构γΝ相改性层耐磨抗蚀性能的报道差异较大,有些甚至相互矛盾。采用等离子体源渗氮技术,于450℃,6 h改性AISI 316奥氏体不锈钢,获得了厚度约为17μm、峰值氮浓度20%(原子分数)、最大显微硬度1 510 HV0.1 N、单一面心结构的γΝ相改性层。分别采用WTM-2E球盘式磨损仪和PARSTAT2273电化学工作站,研究了干摩擦条件下γN相/Si_3N_4陶瓷球的摩擦磨损行为和在3.5%NaCl溶液中的电化学腐蚀行为,揭示了γN相改性层的耐磨抗蚀机理。结果表明:γΝ相改性层的磨损机制由原不锈钢的黏着磨损转变为氧化磨损,摩擦系数由0.88降低至0.65,磨损体积由0.13 mm~3降低到9.50×10-3mm~3,耐磨性能显著提高;γΝ相改性层阳极极化曲线未发生点蚀击穿过程,容抗弧直径增大,相位角平台变宽;采用等效电路Rs-(Rct//CPE)拟合的电荷转移电阻Rct由原不锈钢的1.006×105Ω·cm~2增至1.377×106Ω·cm~2,计算的双电层电容Cdl由88.4m F/cm~2降低至77.8 m F/cm~2,抗蚀性能明显得到了改善。  相似文献   

13.
以304不锈钢为研究对象,采取等离子辉光放电技术对其进行低温离子渗碳,选取不同的工艺参数,测得不同温度条件下的硬度值,然后分别进行盐雾试验,经过对比分析,得到相关数据。结果表明,由于奥氏体不锈钢中有过饱和的碳原子渗入,引起奥氏体晶格发生畸变,使得304不锈钢表面硬度提高。450℃温度条件下,在耐腐蚀性不下降过多的情况下,可以大幅度提高硬度,以获得最佳的硬度与耐腐蚀性。  相似文献   

14.
奥氏体不锈钢离子渗碳后,表面覆盖了一层结合牢固、致密的黑色薄膜,不仅影响表面美观度,还影响了耐腐蚀性能.为了恢复不锈钢原有的颜色和提高渗碳不锈钢表面的耐腐蚀性,对其分别进行了机械法和电化学法亮化处理,并对亮化处理后不锈钢表面硬化层的表面形貌、组织结构、硬度及耐腐蚀性能做了比较.结果表明,与机械法相比,电化学亮化处理虽使不锈钢表面硬化层的厚度和硬度略有减小,但表面的耐腐蚀性能却有较大幅度的提高,用电化学法对渗碳不锈钢表面进行亮化处理是一种比较理想的处理方法.  相似文献   

15.
为了提高高镍铬含量不锈钢的抗渗碳性,探索了奥氏体不锈钢表面的渗硅效果.通过扩散处理,在304奥氏体不锈钢表面获得了结构致密的渗硅层.应用SEM电镜和EDS能谱分析、显微硬度测定等方法观察了渗硅层的微观结构及其性能.结果表明,渗硅层厚度达50μm以上,为典型的柱状晶结构;渗层晶粒中由里到外的硅浓度分布区间为12.24%~20.93%;相应的微观组织的细密程度由表及里呈梯度分布,与基体结合处呈纳米晶结构;显微硬度由里到外在406~477 HV1N.缺口断裂法试验结果表明,渗硅层与钢基体结合十分良好.  相似文献   

16.
采用等离子合金化技术,在含一定碳量的AISI 420F马氏体不锈钢表面制备Zr/Zr C合金层。研究了等离子渗Zr合金化温度和时间对Zr/Zr C合金层组织、相结构、渗层厚度以及硬度和摩擦磨损性能的影响。利用扫描电镜和光导放电光谱分析仪分析Zr/Zr C合金层表面和截面的形貌及成分分布,用X射线衍射表征渗层的物相组成。结果表明:AISI 420F不锈钢渗Zr后,得到组织连续且致密的渗Zr合金层,合金层由表面富Zr层/富Zr C层/Fe-Cr-Zr-C扩散层组成。在900~1000℃合金化范围内,形成的Zr合金层厚度随渗Zr温度的升高由17μm增加至23μm。在950℃渗Zr时,合金层和富Zr C层厚度随着渗Zr时间的延长分别呈直线和抛物线规律增加;渗Zr后试样的硬度最大值为865HV0.025,与基体(269HV0.025)相比有显著提高;摩擦磨损检测表明,与基材相比,AISI 420F不锈钢经渗Zr处理后,划痕宽度由540降低至360μm,摩擦系数由0.8明显降低为0.4左右,耐磨性得到改善。  相似文献   

17.
TC4钛合金低压真空渗氮处理   总被引:1,自引:0,他引:1  
为了改善表面性能,对TC4钛合金在不同温度下进行低压真空渗氮处理。采用扫描电子显微镜和X射线衍射分析了渗氮层的组织结构,测试了渗氮层的显微硬度和耐磨性。结果表明,TC4钛合金经低压真空渗氮处理后,可获得由表层Ti N和次表层Ti2Al N组成的改性层。温度较低时,表面形成氮化物数量较少,渗层较薄,硬度较低。随温度升高,氮化物数量增多,渗层厚度增加,硬度及耐磨性也随之增加,温度达820℃时,表面硬度可达1000~1100 HV,硬化层深度为50~60μm。温度继续增加,氮化物聚集长大,渗氮层开始变得疏松,硬度及耐磨性下降。  相似文献   

18.
通过辉光离子渗扩技术对316L奥氏体不锈钢进行了不同温度下的离子渗氮处理,之后采用物理气相沉积技术在渗氮层外表面制备一层CrN涂层,检测不同温度下离子渗氮+物理气相沉积复合涂层的结合力、硬度、耐磨性和耐蚀性,并对其显微组织和物相进行了观测与分析.结果表明:奥氏体不锈钢不同温度渗氮+物理气相沉积复合改性层的组织随渗氮温度的升高从S相(内层)+CrN涂层(外层)转变为不同程度硬质相析出层(内层)+CrN涂层(外层),不同类型的渗氮层与CrN涂层均有良好的结合力;不论是S相层还是硬质相析出层,经过PVD处理后均能在一定程度上提高渗层的表面硬度、耐磨性和耐蚀性,其中耐蚀性随着渗氮温度的升高逐渐变差,硬度和耐磨性随渗氮温度的升高而逐渐提升.  相似文献   

19.
为解决304不锈钢硬度低、耐磨性差的问题,本文采用预先表面纳米化,温度400、450℃,保温时间4、6 h,氮氢比1∶3的离子渗氮工艺对试样进行处理,研究纳米化以及渗氮工艺对304不锈钢渗氮层形貌和深度、硬度以及摩擦磨损性能的影响.利用金相显微镜、电子探针显微分析仪(EPMA)、能谱仪(EDS)、显微硬度计和磨损试验机对样品的显微组织、微观形貌、硬度及耐磨性进行了表征.结果表明:304不锈钢经表面纳米化与离子渗氮工艺处理后,渗氮层为0.1~0.2 mm,表面硬度约为1 200 HV0.1,比基体硬度提高了6~7倍,耐磨性也大大增强;但渗氮温度越高,保温时间越长,材料表面耐磨性越差.综合各种影响因素得出在本实验条件下最佳处理工艺为:预先表面纳米化,渗氮温度400℃、保温时间6 h.  相似文献   

20.
采用高能气体离子源注入机对刀具不锈钢2Cr13进行氮离子注入,以增强不锈钢的表面硬度和耐磨性能。对注入后的不锈钢试样进行了成分分析、显微硬度、磨损性能和耐蚀性的测试。结果表明:注入较大剂量氮离子后,不锈钢表面生成了CrN、FeN等间隙相,其表面硬度和耐磨性能随着氮离子注入剂量的增加而提升;当注入剂量为7.2×1017cm-2时,不锈钢表面维氏硬度从320HV提高到850HV,摩擦系数从0.52降低到0.33,并且仍具有良好的耐蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号