共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiaopeng Yang Hee Chul Yu Younggeun Choi Wonsup Lee Baojian Wang Jaedo Yang Hongpil Hwang Ji Hyun Kim Jisoo Song Baik Hwan Cho Heecheon You 《Computer methods and programs in biomedicine》2014
The present study developed a hybrid semi-automatic method to extract the liver from abdominal computerized tomography (CT) images. The proposed hybrid method consists of a customized fast-marching level-set method for detection of an optimal initial liver region from multiple seed points selected by the user and a threshold-based level-set method for extraction of the actual liver region based on the initial liver region. The performance of the hybrid method was compared with those of the 2D region growing method implemented in OsiriX using abdominal CT datasets of 15 patients. The hybrid method showed a significantly higher accuracy in liver extraction (similarity index, SI = 97.6 ± 0.5%; false positive error, FPE = 2.2 ± 0.7%; false negative error, FNE = 2.5 ± 0.8%; average symmetric surface distance, ASD = 1.4 ± 0.5 mm) than the 2D (SI = 94.0 ± 1.9%; FPE = 5.3 ± 1.1%; FNE = 6.5 ± 3.7%; ASD = 6.7 ± 3.8 mm) region growing method. The total liver extraction time per CT dataset of the hybrid method (77 ± 10 s) is significantly less than the 2D region growing method (575 ± 136 s). The interaction time per CT dataset between the user and a computer of the hybrid method (28 ± 4 s) is significantly shorter than the 2D region growing method (484 ± 126 s). The proposed hybrid method was found preferred for liver segmentation in preoperative virtual liver surgery planning. 相似文献
2.
Thresholding technique is one of the most imperative practices to accomplish image segmentation. In this paper, a novel thresholding algorithm based on 3D Otsu and multi-scale image representation is proposed for medical image segmentation. Considering the high time complexity of 3D Otsu algorithm, an acceleration variant is invented using dimension decomposition rule. In order to reduce the effects of noises and weak edges, multi-scale image representation is brought into the segmentation algorithm. The whole segmentation algorithm is designed as an iteration procedure. In each iteration, the image is segmented by the efficient 3D Otsu, and then it is filtered by a fast local Laplacian filtering to get a smoothed image which will be input into the next iteration. Finally, the segmentation results are pooled to get a final segmentation using majority voting rules. The attractive features of the algorithm are that its segmentation results are stable, it is robust to noises and it holds for both bi-level and multi-level thresholding cases. Experiments on medical MR brain images are conducted to demonstrate the effectiveness of the proposed method. The experimental results indicate that the proposed algorithm is superior to the other multilevel thresholding algorithms consistently. 相似文献
3.
中文自然语言处理中专业领域分词的难度远远高于通用领域。特别是在专业领域的分词歧义方面,一直没有找到有效的解决方法。针对该问题提出基于无监督学习的专业领域分词歧义消解方法。以测试语料自身的字符串频次信息、互信息、边界熵信息为分词歧义的评价标准,独立、组合地使用这三种信息解决分词歧义问题。实验结果显示该方法可以有效消解专业领域的分词歧义,并明显提高分词效果。 相似文献
4.
Kuo-Liang Chung Author Vitae Hsu-Lien Huang Author Vitae Author Vitae 《Pattern recognition》2004,37(8):1591-1605
Image segmentation, which partitions the image into homogeneous regions, is a fundamental operation in image processing. Suppose the input gray image with size N×N has been compressed into the compressed image via quadtree and shading representation. Assume that the number of blocks in the representation is B, commonly B<N2 due to the compression effect. This paper first derives some closed forms for computing the mean/variance of any block and for calculating the two statistical measures of any merged region in O(1) time. It then presents an efficient O(Bα(B))-time algorithm for performing region segmentation on the compressed image directly where α(B) is the inverse of the Ackerman's function and is a very slowly growing function. With the same time complexity, our results extend the pioneering results by Dillencourt and Samet from the map image to the gray image. In addition, with four real images, experimental results show that our proposed algorithm has about 55.4% execution time improvement ratio when compared to the previous fastest region-segmentation algorithm by Fiorio and Gustedt whose O(N2)-time algorithm is run on the original N×N gray image. 相似文献
5.
Most of the proposed algorithms to solve the dynamic clustering problem are based on nature inspired meta-heuristic algorithms. In this paper a different reinforcement based optimization approach called continuous action-set learning automata (CALA) is used and a novel dynamic clustering approach called ACCALA is proposed. CALA is an optimization tool interacting with a random environment and learn the optimal action from the environment feedbacks. In this paper the dynamic clustering problem considered as a noisy optimization problem and the team of CALAs is used to solve this noisy optimization problem. To build such a team of CALAs this paper proposed a new representation of CALAs. Each automaton in this team uses its continuous action-set and defining a suitable action-set for each automaton has a great impact on the CALAs search behavior. In this paper we used the statistical property of data-sets and proposed a new method to automatically find an action-set for each automaton. The performance of ACCALA is evaluated and the results are compared with seven well-known automatic clustering techniques. Also ACCALA is used to perform automatic segmentation. The experimental results are promising and show that the proposed algorithm produced compact and well-separated clusters. 相似文献
6.
分水岭算法和基于MRF的层次聚类相结合的混合无监督图像分割算法 总被引:1,自引:1,他引:1
提出一种新的混合多阶段无监督图像分割算法。在第一阶段,通过分水岭算法得到一幅过度分割的图像,该图像中的所有小区域作为初始聚类状态将在接下来的层次聚类阶段中被合并。在第二阶段,一种新的启发式的基于Bayesian方法和Markov随机域的计算模型被用于基于区域的层次聚类算法,该算法用来合并初始分割结果中的邻接区域,以改进分水岭算法的分割效果。深入分析了该计算模型中两个相互作用的部分。通过对多种不同种类图像使用该算法进行分割,表明这种多阶段的方法适合无监督分割,它按照视觉一致的方式合并区域,并且比传统的层次聚类算法快很多。 相似文献
7.
An algorithm for the detection and measurement of the glomerular basement membrane in kidney electron micrographs by image analysis techniques is described. Starting from a user-specified point, local features within a small window are computed to give a feature score. Feature scores for adjacent neighbourhoods are also determined, and windows that satisfy similarity criteria are linked to produce the centerline of the membrane. A region-growing process completes the segmentation procedure. The adaptive and local nature of the algorithm ensures successful segmentation despite the complex and variable characteristics of the micrograph image. 相似文献
8.
Adaptive segmentation of noisy and textured images 总被引:2,自引:0,他引:2
An image segmentation algorithm is described which is based on the integration of signal model parameter estimates and maximum a posteriori labelling. The parameter estimation is based on either a maximum likelihood-based method for a quadric signal model or a maximum pseudo-likelihood based method for a Gauss-Markov signal model. The first case is applicable to standard grey-level image segmentation as well as segmentation of shaded 3D surfaces, while the second case is applicable to texture segmentation. A key aspect of the algorithm is the incorporation of a coarse to fine processing strategy which limits the search for the optimum labelling at any one resolution to a subset of labellings which are consistent with the optimum labelling at the previous coarser resolution. Consistency is in terms of a prior label model which specifies the conditional probability of a given label in terms of the labelling at the previous level of resolution. It is shown how such an approach leads to a simple relaxation procedure based on local pyramid node computations. An extension of the algorithm is also described which performs accurate inter-region boundary placement using a step-wise refinement procedure based on a simple adaptive filter. The problem of automatic determination of the number of regions is also addressed. It is shown how a simple agglomerative clustering idea, again based on pyramid node computations, can effectively solve this problem. 相似文献
9.
Surface defect detection plays a crucial role in the production process to ensure product quality. With the development of Industry 4.0 and smart manufacturing, traditional manual defect detection becomes no longer satisfactory, and deep learning-based technologies are gradually applied to surface defect detection tasks. However, the application of deep learning-based defect detection methods in actual production lines is often constrained by insufficient data, expensive annotations, and limited computing resources. Detection methods are expected to require fewer annotations as well as smaller computational consumption. In this paper, we propose the Self-Supervised Efficient Defect Detector (SEDD), a high-efficiency defect defector based on self-supervised learning strategy and image segmentation. The self-supervised learning strategy with homographic enhancement is employed to ensure that defective samples with annotations are no longer needed in our pipeline, while competitive performance can still be achieved. Based on this strategy, a new surface defect simulation dataset generation method is proposed to solve the problem of insufficient training data. Also, a lightweight structure with the attention module is designed to reduce the computation cost without incurring accuracy. Furthermore, a multi-task auxiliary strategy is employed to reduce segmentation errors of edges. The proposed model has been evaluated with three typical datasets and achieves competitive performance compared with other tested methods, with 98.40% AUC and 74.84% AP on average. Experimental results show that our network has the smallest computational consumption and the highest running speed among the networks tested. 相似文献
10.
张俊峰 《计算机工程与设计》2010,31(9)
针对传统多分辨率模糊聚类图像分割算法的不足,提出了将二型模糊应用于多分辨率模糊聚类图像分割的新方法.将最粗尺度图像的聚类中心作为下一较细分辨率图像的初始聚类中心,并采用较粗分辨率图像聚类的类内最大距离对细分辨率图像的模糊聚类目标函数进行约束.对较小的粗分辨率图像进行了模糊隶属度扩展,得到一组隶属度值,再采用二型模糊算法有效融合该隶属度集合,完成聚类分割.实验结果表明,该算法能有效实现目标区域分离,获得理想分割效果. 相似文献
11.
Shoudong Han Author Vitae Author Vitae Xianglin Wu Author Vitae 《Pattern recognition》2011,44(3):503-518
This paper proposes a novel texture segmentation approach using independent-scale component-wise Riemannian-covariance Gaussian mixture model (ICRGMM) in Kullback-Leibler (KL) measure based multi-scale nonlinear structure tensor (MSNST) space. We use the independent-scale distribution and full-covariance structure to replace the covariant-scale distribution and 1D-variance structure used in our previous research. To construct the optimal full-covariance structure, we define the full-covariance on KL, Euclidean, log-Euclidean, and Riemannian gradient mappings, and compare their performances. The comparison experiments demonstrate that the Riemannian gradient mapping leads to its optimum properties over other choices when constructing the full-covariance. To estimate and update the statistical parameters more accurately, the component-wise expectation-maximization for mixtures (CEM2) algorithm is proposed instead of the originally used K-means algorithm. The superiority of the proposed ICRGMM has been demonstrated based on texture clustering and Graph Cuts based texture segmentation using a large number of synthesis texture images and real natural scene textured images, and further analyzed in terms of error ratio and modified F-measure, respectively. 相似文献
12.
13.
为了减少对标注图像数量的依赖,提出一种新颖的半监督学习方法用于细胞核的自动分割。首先,通过新的卷积神经网络(CNN)从背景中自动提取细胞区域。其次,判别器网络通过应用全卷积网络来为输入的图像生成置信图;同时耦合对抗性损失和标准交叉熵损失,以改善分割网络的性能。最后,将标记图像和无标记图像与置信图结合来训练分割网络,使分割网络可以在提取的细胞区域中识别单个细胞核。对84张图像(训练集中的1/8图像带标注,其余图像无标注)的实验结果表明,提出的细胞核分割方法的分割准确率度量(SEG)得分可以达到77.9%,F1得分可以达到76.0%,这比该方法使用670张图像且训练集中的所有图像都带标注时的表现要好。 相似文献
14.
15.
为了减少对标注图像数量的依赖,提出一种新颖的半监督学习方法用于细胞核的自动分割。首先,通过新的卷积神经网络(CNN)从背景中自动提取细胞区域。其次,判别器网络通过应用全卷积网络来为输入的图像生成置信图;同时耦合对抗性损失和标准交叉熵损失,以改善分割网络的性能。最后,将标记图像和无标记图像与置信图结合来训练分割网络,使分割网络可以在提取的细胞区域中识别单个细胞核。对84张图像(训练集中的1/8图像带标注,其余图像无标注)的实验结果表明,提出的细胞核分割方法的分割准确率度量(SEG)得分可以达到77.9%,F1得分可以达到76.0%,这比该方法使用670张图像且训练集中的所有图像都带标注时的表现要好。 相似文献
16.
17.
采用一种新的基于粗糙集理论的图像分割算法。通过提取直方图的外层,以及计算像素点周围的局部模糊程度来更新粗糙度。使用局部模糊粗糙度和待定算子来更新FCM算法中的隶属度函数。从粗糙集理论意义上来说,直方图的外层与上近似有关,而直方图取值与下近似有关。该方法通过对比传统的聚类分割算法和刘华军的改进算法,大大降低了时间复杂度,聚类效果显著。实验证明,该方法收敛性较强,运行时间较短,且具有良好的分割效果。 相似文献
18.
Motion segmentation refers to the problem of separating the objects in a video sequence according to their motion. It is a fundamental problem of computer vision, since various systems focusing on the analysis of dynamic scenes include motion segmentation algorithms. In this paper we present a novel approach, where a video shot is temporally divided in successive and overlapping windows and motion segmentation is performed on each window respectively. This attribute renders the algorithm suitable even for long video sequences. In the last stage of the algorithm the segmentation results for every window are aggregated into a final segmentation. The presented algorithm can handle effectively asynchronous trajectories on each window even when they have no temporal intersection. The evaluation of the proposed algorithm on the Berkeley motion segmentation benchmark demonstrates its scalability and accuracy compared to the state of the art. 相似文献
19.
Large-sized product cannot be printed as one piece by a 3D printer because of the volume limitation of most 3D printers. Some products with the complex structure and high surface quality should also not be printed into one piece to meet requirement of the printing quality. For increasing the surface quality and reducing support structure of 3D printed models, this paper proposes a 3D model segmentation method based on deep learning. Sub-graphs are generated by pre-segmenting 3D triangular mesh models to extract printing features. A data structure is proposed to design training data sets based on the sub-graphs with printing features of the original 3D model including surface quality, support structure and normal curvature. After training a Stacked Auto-encoder using the training set, a 3D model is pre-segmented to build an application set by the sub-graph data structure. The application set is applied by the trained deep-learning system to generate hidden features. An Affinity Propagation clustering method is introduced in combining hidden features and geometric information of the application set to segment a product model into several parts. In the case study, samples of 3D models are segmented by the proposed method, and then printed using a 3D printer for validating the performance. 相似文献
20.
In this paper, a fuzzy clustering technique for image segmentation is developed by incorporating a hybrid of local spatial membership and data information into the conventional hard C-means (HCM) algorithm. This incorporation is a threefold procedure. (1) The membership function of a pixel is spatially smoothed in the pixel vicinity. (2) The Kullback-Leibler (KL) divergence between the pixel membership function and the smoothed one is added to the HCM objective function for fuzzification. (3) The resulting fuzzified HCM is regularized by adding a weighted HCM-like function where the original pixel data are replaced by locally smoothed ones. Thereby the weight is proportional to the residual of the locally smoothed membership. This residual decreases when many pixels existing in the pixel vicinity belong to the same cluster. Thus, the weighted distance decreases, allowing the pixel membership to follow the dominant membership in the pixel vicinity. The simulation results of segmenting synthetic, medical and media images have shown that the proposed algorithm provides better performance compared to several previously developed algorithms. For example, in a synthetic image, with added white Gaussian noise having a variance of 0.3, the proposed algorithm provides accuracy, sensitivity and specificity of 92%, 84% and 94.7% respectively, while the algorithm with the closest results provides 81.9% of accuracy, 62.2% of sensitivity and 86.8% of specificity. In addition, the proposed algorithm shows the capability to identify the number of clusters. 相似文献