首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 424 毫秒
1.
利用水解-缩合法,以苯基三甲氧基硅烷、乙烯基单封头为原料制得乙烯基苯基倍半硅氧烷。采用1H NMR、FTIR分析了倍半硅氧烷的结构。以热失重分析(TGA)为手段,研究了乙烯基苯基倍半硅氧烷在氮气气氛中的热分解动力学;利用Kissinger方程、Flynn-Wall-Ozawa方程对乙烯基苯基倍半硅氧烷进行了热分解动力学研究,得到了乙烯基苯基倍半硅氧烷的热分解活化能E和指前因子A;将15种热分解机理函数分别代入4种动力学方程中研究了该乙烯基苯基倍半硅氧烷的热分解机理。研究表明:制得的乙烯基苯基倍半硅氧烷中乙烯基质量分数为2.01%,乙烯基苯基倍半硅氧烷在氮气气氛中热分解活化能E=237.62 k J/mol,指前因子A=2.90×1014s-1,最概然热分解机理为f(α)=1/4(1-α)[-ln(1-α)]-3,热分解动力学方程为:dα/dt=7.25×1013(1-α)[-ln(1-α)]-3exp(-2.85×104/T)。  相似文献   

2.
利用热失重分析法(TG)研究了聚酰胺(PA)66及溴化聚苯乙烯(BPS)、BPS协同Sb2O3阻燃PA66在不同升温速率下的热稳定性及热分解动力学,采用Kissinger及Flynn-Wall-Ozawa方法分析了PA66和阻燃PA66的热分解活化能;利用Coats-Redfern方法确定了PA66和阻燃PA66的热分解动力学机理及其模型,得出了聚合物主降解阶段的非等温动力学方程。结果表明,BPS协同Sb2O3阻燃体系阻燃PA66的效果最好,体系的降解模式发生了变化,PA66和BPS阻燃PA66的机理方程为g(α)=-ln(1-α),反应级数n=1,而BPS协同Sb2O3阻燃PA66的机理方程为g(α)=(1-α)-1-1,反应级数n=2。  相似文献   

3.
利用热重分析法研究了聚对苯二甲酸丁二醇酯(PBT)及溴化环氧树脂(BER)协同三氧化二锑(Sb2O3)阻燃PBT在不同升温速率下的热稳定性及热分解动力学;采用Kissinger及Flynn-Wall-Ozawa方法计算出了PBT和阻燃PBT的热分解活化能;利用Coats-Redfern方法确定了PBT和阻燃PBT的热分解动力学机理及其模型,得出了聚合物主降解阶段的非等温动力学方程。结果表明:BER协同Sb2O3阻燃体系的添加提高了PBT的阻燃性能;通过Kissinger和FWO法的分析可知,阻燃PBT在主分解阶段的活化能明显提高;PBT的热分解机理函数为g(α)=1-(1-α)1/3,阻燃PBT的热分解机理函数为g(α)=2[(1-α)-1/2-1],反应级数n=1.5。  相似文献   

4.
以热重(TG)分析为手段,研究了FeS还原CaSO_4在氮气气氛中的热分解动力学。利用KAS法、Ozawa法、KAS-迭代法和Ozawa-迭代法对其进行了动力学分析,求出了该反应的动力学参数,同时利用Coast-Redfern法研究了该反应的动力学机制函数。结果表明:N_2气氛下FeS还原CaSO_4的热分解机制符合相边界反应,其动力学方程为G(α)=1-(1-α)~(1/3),表观活化能为309.28 kJ/mol,表观指前因子为2.17×10~(11)s~(-1)。  相似文献   

5.
以聚酰胺66 (PA66)为基体,二乙基次膦酸铝(AlPi)和多聚苯磷酰硅油(PPSO)为阻燃剂,在密炼机上通过熔融共混制备了阻燃PA66,采用热重分析仪表征了阻燃PA66的热稳定性,通过Kissinger法(K法)和Flynn-Wall-Ozawa法(FWO)法分析了阻燃剂对材料热分解活化能的影响,并通过Coats-Redfern法进一步分析了材料的热分解机理和反应级数。实验结果表明,单独加入AlPi时,降低了材料的热分解活化能,使材料的分解提前,随着PPSO的加入,后期热分解活化能增加,提高了材料的热稳定性。纯PA66的机理函数G(α)=1–(1–α)~(1/4) (0.10≤α≤0.90),反应级数为1/4,其为相边界反应分解机理;10% AlPi阻燃PA66的机理函数G(α)=α~2 (α≤0.35,α≥0.70)和G(α)=α~(3/2)(0.40≤α≤0.65),反应级数分别为2和3/2,整个分解过程均为相边界反应分解机理;6% AlPi+2% PPSO阻燃PA66的机理函数G(α)=α+(1–α)ln(1–α) (α≤0.50)和G(α)=[–ln(1–α)]~3 (α≥0.50),反应级数分别为1和3,其分解机理分别为二维扩散的分解机理、随机成核和随后生长分解机理。  相似文献   

6.
以TG-DTG为手段,研究了1,3,5-三(5,5-二溴甲基-1,3-二氧杂己内磷酰氧基)苯(TDDB)在氮气气氛中的热分解动力学,利用Kissinger法、Flynn-Wall-Ozawa(FWO)法对TDDB进行热分解动力学分析,求出该物质的热分解动力学参数,利用Coast-Redfen法研究该物质的热分解机理.结果表明:Kissinger法所求得的活化能为344.48 kJ/mol,指前因子lnA为66.02;Flynn-Wall-Ozawa法所求得的活化能为337.61 kJ/mol.TDDB的热分解的动力学方程为g(α)=α2.反应级数n=2.  相似文献   

7.
利用热重分析法,采用Flynn-Wall-Ozawa(FWO)法和Kissinger法计算出了甲基环己基次膦酸锌(Zn(MHP))、环氧树脂(EP)以及复合材料(EP/Zn(MHP))阻燃体系在氮气中的热分解活化能以及指前因子,在此基础上利用Coast-Redfern法选取不同的机理模型,确定了热降解动力学机理。研究结果表明:Kissinger法和FWO法所得到的活化能值相近,Zn(MHP)、EP/Zn(MHP)和EP平均热分解活化能依次减小。Zn(MHP)的加入,能增加EP的热稳定性以及热分解活化能。Coats-Redfern法推断EP,Zn(MHP)/EP具有相似的热分解机理,热分解符合函数g(a)=[-ln(1-a)]~(2/3),反应级数n=2/3,Zn(MHP)的热分解符合函数g(a)=-ln(1-a)机理,反应级数n=1。  相似文献   

8.
对α-萘乙酸(C_(12)H_(10)O_2)的热分解机理进行了研究,采用TG曲线确定了它的热分解过程,并通过四种方程对其热分解过程的活化能En进行了计算,利用41种不同的机理方程af)((微分机理方程)和G(α)(积分机理方程),对其热分解过程的非等温动力学数据进行了线性回归处理,并推断出其热分解机理为n=1/4的化学反应机理,最可几函数为4/3af-=)1(4)(a,并建立了其动力学方程。  相似文献   

9.
卢莲英  屈章瑜 《化学世界》2008,49(3):154-157
采用TG-DTG技术研究了2-巯基吡啶镉(Ⅱ)、汞(Ⅱ)配合物在氮气气氛中的热分解机理及非等温动力学。采用积分法(Coats-Refern方程,HM方程,MKN方程)和微分法(Achar方程)对非等温动力学数据进行了分析,得到了配合物第一步热分解反应的机理函数、动力学参数和热分解动力学方程。结果表明:其热分解过程属F2(化学反应)机理控制,非等温热分解的动力学方程为dα/dT=A/β.e-E/RT(1-α)2,其中镉(Ⅱ)配合物的表观活化能E=86.35 kJ/mol,指前因子A=4.72×107s-1;汞(Ⅱ)配合物的表观活化能E=189.67 kJ/mol,指前因子A=3.79×1018s-1。  相似文献   

10.
张予东  徐元清  常海波  张普玉 《化学世界》2012,53(4):204-207,235
用热分析法研究了阻燃剂聚丙烯酸五溴苄基酯在空气和氮气气氛中的热分解动力学。该阻燃剂在空气气氛中为两步分解,在氮气气氛中为一步分解,利用Friedman法求出聚丙烯五溴苄基酯的第一步分解反应的活化能变化趋势,同时利用Satava-Sestak法研究了其热分解机理。结果表明,在0.10至0.90的转化率范围内,聚丙烯酸五溴苄基酯在空气气氛下的活化能为167.35kJ/mol,在氮气气氛下的活化能为171.94kJ/mol,热分解机理均为Avrami-Erofeev方程,随机成核和随后生长,反应级数分别为n=23和n=12。动力学方程分别为G(a)=[-ln(1-a)]23和G(a)=[-ln(1-a)]12。  相似文献   

11.
MnSO4·H2O热解制备四氧化三锰反应动力学   总被引:2,自引:0,他引:2  
为了确定空气中硫酸锰分解生成四氧化三锰的机理,用TG-DSC结合XRD分析研究了硫酸锰的热分解行为,用非线性等转化率法和普适积分法研究了硫酸锰脱水和分解过程的反应动力学。研究结果表明,200~400℃之间为MnSO4·H2O脱水阶段,积分动力学机理函数为G(α)=α3/2, 符合Mampel Power法则,平均表观活化能为117.11 kJ·mol-1;750~1050℃之间为MnSO4的分解阶段,积分动力学机理函数为G(α)=1-(1-α)1/2,符合相边界反应的收缩圆柱体模型,平均表观活化能为226.44 kJ·mol-1,MnSO4等温分解结果与TG-DSC分析结果一致。  相似文献   

12.
彭强  郭玉香  曲殿利 《硅酸盐通报》2017,36(6):1886-1890
利用热重(TG)分析法,对不同粒度菱镁矿的热分解过程进行研究.根据Flynn-Wall-Ozawa法,拟合计算得到不同粒度菱镁矿热分解的活化能和指前因子.采用Thermo-kinetics软件对可能性最大的5种动力学机理函数进行拟合,根据相关系数最大的原则确定最佳分解机理.研究结果表明:菱镁矿热分解的活化能随菱镁矿粒度的增大而减小,当菱镁矿的粒度由小增大时,控制其热分解过程的机理由化学反应逐渐向颗粒内部的传热和CO2的扩散传质转变;其热分解过程的最可几机理函数为R3模型,即三级相边界扩散反应,函数方程为G(α)=1-(1-α)1/3.  相似文献   

13.
为了解十氢十硼酸双四乙基铵(BHN-10)热分解特性及反应动力学,采用同步热分析-红外质谱联用技术(TG-DSC-MS-FTIR)及热裂解原位池-傅里叶变换红外光谱联用技术(FTIR)对BHN-10热分解过程中间产物和最终产物进行分析;使用Kissinger和Ozawa方法计算两个热分解阶段的动力学参数,并利用Coats-Redfern法拟合得到反应动力学方程。结果表明,BHN-10热分解第一阶段和第二阶段的活化能分别为150.9 kJ/mol和161.7 kJ/mol;第一阶段受随机成核和核增长机理控制,第二阶段遵从幂级数法则(Mampel power);两阶段的动力学机理函数分别为G(α)=[-ln(1-α)]1/3(n=3)和G(α)=α1/4;BHN-10热分解反应第一阶段质量损失2.9%,与理论脱氢质量损失相一致,此阶段发生B10H2-10的脱氢产生氢气和非晶态硼的过程,在热分解第一阶段会生成熔融分解型的中间产物四乙基铵阳离子;第二步反应质量损失39.4%,接近第二阶段气体质量损失的计算值43.4%,是四乙基铵阳离子上的质子转移并通过Hoffman消除反应生成乙烯和Et3N,Et3N进一步分解为C 2H 6、NH3、H2和碳单质。  相似文献   

14.
采用水热法制备了纳米Fe_2O_3,并用超声分散法将其与纳米Al颗粒复合制备了超级铝热剂Al/Fe_2O_3,利用X-射线粉末衍射(XRD)、透射电子显微镜(TEM)、扫描电镜及能量散射光谱仪(SEM-EDS)对复合物的物相、组成、形貌和结构进行了分析表征,采用差示扫描量热法(DSC)和热红联用技术(TG-FTIR)研究了Al/Fe_2O_3对硝化棉(NC)热分解过程的影响。结果表明,Al/Fe_2O_3-NC和NC的热分解过程遵循Avrami-Erofeev方程f(α)=1.5(1-α)[-ln(1-α)]1/3;超级铝热剂Al/Fe_2O_3可降低硝化棉的表观活化能、临界点火温度和临界爆炸温度,在促进硝化棉O-NO_2键断裂和凝聚相二次自催化反应中起到至关重要的作用。  相似文献   

15.
ABSTRACT

A new type of phosphorus-based flame retardant (ADCP) was added to polyamide (PA). Product thermostability was analysed using the thermogravimetric analyser. Flame retardant properties were investigated by adding ADCP to PA. The limiting oxygen index and vertical burning were also determined. In addition, the results of thermal decomposition kinetics of PA materials with and without the flame retardant were analysed by the Kissinger method and the Flynn Wall Ozawa method, respectively. Subsequently, the required thermal decomposition activation energy was calculated and the accuracy and reliability were checked. Coast Redfern theory model was used to verify the thermal decomposition mechanism function model, and the kinetic equation and reaction mechanism were obtained. The thermal decomposition mechanism of the material was evaluated, which proved the efficiency of ADCP flame retardant.  相似文献   

16.
合成了以2-巯基吡啶为配体的汞(Ⅱ)配合物,通过元素分析、EDTA络合滴定分析和红外光谱对其进行了表征,同时采用TG-DTG技术研究了配合物的热分解机理及非等温动力学。结果表明:其配合物热分解过程经过二个阶段,第一步热分解属F2(化学反应)机理控制,非等温热分解的动力学方程为dα/dT=A/β.e-E/RT(1-α)2,表观活化能E=189.67 kJ/mol,指前因子A=3.79×1018/s。  相似文献   

17.
苯氨基甲酸甲酯热解制备苯基异氰酸酯的非等温动力学   总被引:1,自引:0,他引:1  
采用热分析与红外联用技术对苯氨基甲酸甲酯(MPC)热解历程进行分析,结果表明,苯氨基甲酸甲酯的热解过程是一步生成苯基异氰酸酯同时释放出甲醇气体. 进一步对该热解反应进行了非等温动力学研究,对MPC的热解数据采用Flynn-Wall-Ozawa法计算得到反应活化能. 采用5种方法考察反应动力学参数,结果表明,MPC热解机理为相边界反应模型,机理函数为G(a)=a1/3,热解反应活化能E=20.52 kJ/mol,指前因子lgA=2.23,动力学方程为a1/3= 169.82exp[20.52′103/(8.314T)]t.  相似文献   

18.
利用非等温热重分析法(TG),研究了高纯氮气气氛下1-丁基-3-甲基咪唑四氟硼酸盐([bmim][BF4])的热分解动力学及机理函数。采用等转化率法和多元非线性回归法测定了[bmim][BF4]的热分解动力学。等转化率法表明[bmim][BF4]的活化能为E和指前因子logA分别为:198 kJ/mol和11.94 s-1。多元非线性回归法表明[bmim][BF4]的热分解机理模型函数为:n级自催化反应(Cn),反应级数为n=1.1426,所对应的机理模型函数为fα=1-α1.14261+1.0024α,指前因子logA和活化能E分别11.18 s-1和188 kJ/mol。另外,等转化率法和多元非线性回归法测得的活化能与量子化学计算法得到的活化能值均相吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号