首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
共聚聚酰亚胺纤维的结构与性能   总被引:1,自引:0,他引:1  
将均苯四甲酸二酐(PMDA)/4,4'-二苯醚二胺(ODA)/2-对氨基苯基-5-氨基苯并咪唑(PABZ)共聚体系的聚酰胺酸(PAA)溶液进行湿法纺丝,制成PAA纤维,采用热亚胺化的方法制得聚酰亚胺(PI)纤维。研究了不同的纺丝及其后处理条件对PI纤维结构性能的影响。结果表明:当聚合物中PABZ含量较高时,PAA初生纤维拉伸比较高,热亚胺化温度高,PI纤维的力学性能显著提高。当PABZ/ODA摩尔比为7/3,PAA初生纤维拉伸比为2.48,热处理温度512℃,处理时间5rain时,PJ纤维力学性能最好,其拉伸强度和初始模量分别为10.2,322cN/dtex,PI纤维热性能较好,在510℃左右仍有较好的热稳定性,其玻璃化转变温度为410~433℃。扫描电镜观察和广角X射线衍射分析表明,较高的热亚胺化温度会导致PI纤维内部出现裂纹,结晶度较低为16.63%。  相似文献   

2.
以联苯二酐与2,5-二(4-氨基苯基)嘧啶、4,4-二氨基二苯醚进行共聚,制备高相对分子质量的聚酰胺酸(PAA)纺丝原液,采用湿法纺丝、热环化、热拉伸制备共聚聚酰亚胺(PI)纤维,研究了热处理过程中PI纤维结构与性能的演变过程。结果表明:当热环化温度高于300℃时,PAA基本环化形成PI结构;在热拉伸作用下,PI纤维的凝聚态结构更加规整,且随拉伸倍数的提高,纤维的晶区取向度增加,同时伴随着力学性能的提升;当热拉伸倍数为2.00时,所得PI纤维的力学性能最佳,其拉伸强度及拉伸模量分别可达到21.8 cN/dtex和642.7 cN/dtex。  相似文献   

3.
利用均苯四甲酸二酐(PMDA)、4,4'-二氨基二苯醚(4,4'-ODA)和自制三单体在强极性非质子有机溶剂N,N-二甲基乙酰胺(DMAc)中进行共缩聚反应,制得高粘度的聚酰胺酸(PAA)溶液,经涂膜、热亚胺化,得到坚韧透明的聚酰亚胺(PI)薄膜,其具有较好的拉伸断裂强度和合适的伸长率;同时将得到的PAA溶液进行湿法纺丝,制成PAA纤维,采用热亚胺化和高温拉伸的方法制得PI纤维,其断裂强度能达到3.67cN/dtex。  相似文献   

4.
采用4,4’-二氨基二苯醚和1,6-己二胺(HDA)为二胺单体,与均苯四甲酸酐(PMDA)在二甲基乙酰胺(DMAc)中共聚得到聚酰胺酸(PAA)纺丝原液,通过干法纺丝工艺路线纺制PAA初生纤维,利用热酰亚胺化制备了共聚型聚酰亚胺(PI)纤维;通过红外光谱分析、动态力学分析、热重分析、X射线衍射等手段分析了PI纤维的力学性能及热性能。结果表明:红外光谱分析发现HDA的长亚甲基链引入到PI的链中;当HDA质量分数为20%时,PI纤维的断裂强度和模量分别为5.1 cN/dtex和76 cN/dtex;动态力学和热重分析发现,纤维的玻璃化转变温度为315~380℃,热稳定性在400℃以上;纤维经热处理后聚集态结构存在一定的有序性。  相似文献   

5.
以N,N-二甲基乙酰胺(DMAc)为溶剂,3,3',4,4'-二苯醚四甲酸二酐(ODPA)和4,4'-二氨基二苯醚(ODA)为单体,利用高压静电纺丝技术,制备了聚酰胺酸(PAA)和聚酰亚胺(PI)非织造布,并采用扫描电镜(SEM)对PAA及PI非织造布的表面形态进行表征,研究了PI非织造布的力学性能。结果表明:经300℃热亚胺化处理得到的PI非织造布,纤维平均直径减小到500nm以下,纤维的带状形貌与PAA明显不同,并且出现了收缩、弯曲等现象。静电纺丝法制得的PI非织造布的力学性能仍然比较优越。  相似文献   

6.
聚酰亚胺纤维的制备及其结构研究   总被引:4,自引:2,他引:2  
将均苯四甲酸二酐(PMDA)和4,4’-二氨基二苯醚(ODA)在N-甲基吡咯烷酮(NMP)中进行溶液聚合得到聚酰胺酸(PAA)溶液,并用该溶液进行干湿法纺丝得到PAA纤维,分别用化学酰亚胺化法和热酰亚胺化法得到聚酰亚胺(PI)纤维。研究了凝固浴组成和工艺条件对PAA形态结构和纤维性能的影响,以及不同酰亚胺化方法对PI纤维形态结构和性能的影响。结果表明:以甲醇为凝固浴制备的PAA初生纤维,无孔致密,最高拉伸强度和初始模量分别为2.21 cN/dtex和40.73 cN/dtex;采用化学酰亚胺化法制得的PI纤维中存在少许孔洞缺陷,其强度较低,热酰亚胺化法制得的PI纤维无孔致密,其强度和模量分别达到2.83 cN/ dtex和43.4 cN/dtex。  相似文献   

7.
利用实验室自制的聚酰亚胺(P)I溶液,通过干湿法纺丝制得PI初生纤维。在以水和N-甲基吡咯烷酮(NMP)混合溶液(体积比8∶2)作为凝固浴,凝固浴温度为5~15℃的条件下,所得初生纤维结构均匀密实,纤维截面呈圆形或腰圆形。在对初生纤维进行热处理时,随着热处理温度升高和时间增加,PI纤维的力学性能增强。当热处理温度为300~320℃、时间为30 min时,PI纤维的力学性能最优,其断裂强度和初始模量达到2.474 cN/dtex和50.066 cN/dtex;当热处理温度高于320℃,时间超过1 h,纤维力学性能又缓慢下降。纤维的热稳定性较好,在500℃左右仍具有较好的热稳定性。  相似文献   

8.
针对均苯四甲酸二酐和4,4′-二氨基二苯醚体系两步法制备的聚酰亚胺(PI)纤维强度比较偏低的问题,加入刚性单体对苯二胺,在N-甲基吡咯烷酮中进行三元共聚得到聚酰胺酸(PAA),选用水和乙醇的混合溶液为凝固浴通过干湿法纺制出PAA纤维。对PAA纤维进行不同倍数的拉伸,然后通过优化酰亚胺化条件制得了致密的PI纤维,处理温度在400℃时,其强度和模量可分别达到4.29 cN/dtex和389 cN/dtex。  相似文献   

9.
采用低温溶液缩聚法,在聚对苯二甲酰对苯二胺(PPTA)聚合体系中引入了一定量的4,4'-二氨基二苯醚(4,4'-ODA),制备出了高黏度的改性PPTA纺丝原液,并直接进行湿法纺丝;研究了使用不同黏度的纺丝原液时,拉伸倍数、凝固浴温度、凝固浴浓度等纺丝工艺条件对初生纤维力学性能的影响,确定了最佳的湿法纺丝条件;借助扫描电镜、热重分析仪、红外光谱、X射线衍射对纤维的结构和性能进行了表征。结果表明:4,4'-ODA被成功地引入到PPTA中,但改性PPTA的结晶性能和耐热性能下降;当改性PPTA纺丝原液的比浓对数黏度(ηinh)从2.12 dL/g增大至2.58 dL/g,拉伸倍数从1.25增加至2.27时,改性PPTA纤维的强度均有所增加;最佳纺丝条件为改性PPTA的ηinh2.58 dL/g,纺丝温度50℃,拉伸倍数2.27,凝固浴为N-甲基吡咯烷酮与水的体积比1∶9,凝固浴温度30℃,在此条件下可制得改性PPTA初生纤维的断裂强度为4.22 cN/dtex,断裂伸长率为24.9%,模量为105.98 cN/dtex。  相似文献   

10.
《合成纤维工业》2017,(1):50-53
以4,4'-(六氟异丙烯)二酞酸酐(6FDA)与4,4'-双(4-氨基苯氧基)二苯砜(BAPS)为反应单体,以N-甲基-2-吡咯烷酮(NMP)为溶剂,合成了聚酰胺酸(PAA),将PAA溶液采用流延成膜的方法制备成薄膜;另外,将PAA溶液采用干-湿法纺丝工艺制得PAA中空纤维膜,再将PAA薄膜及其中空纤维膜在300℃左右的高温热环化制得6FDA-BAPS型聚酰亚胺(PI)膜。研究了6FDABAPS型PI及其中空纤维膜的结构与性能。结果表明:所合成的6FDA-BAPS型PI为目标产物,其在NNP、N,N-二甲基乙酰胺、四氢呋喃中具有良好的溶解性能。6FDABAPS型PI中空纤维膜外皮层致密、支撑层疏松多孔,该中空纤维膜具有较高的热学性能和力学性能,在氮气氛围中热失重5%的温度为511℃,断裂强度为26.5 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号