共查询到17条相似文献,搜索用时 93 毫秒
1.
能量传导模型及在医学图像分割中的应用 总被引:1,自引:0,他引:1
提出了一种基于水平集框架的能量传导模型ECM(energy conduction model)用于对医学图像进行分割.该模型通过对图像中的灰度分布和空间中的温度场分布进行对比,有效定义了图像能量和图像能量的传导方程,并通过模拟热量传递的过程对方程进行求解.ECM模型的优点在于,它在描述图像灰度分布的全局特征的同时,有效地捕捉到图像局部区域的灰度对比度变化,因此它能够对灰度分布不均匀和含有噪声的图像进行精确分割.基于水平集函数本身的拓扑可变性,该方法还能够实现同一图像中的多目标分割.使用该方法对模拟和真实的医学图像进行了分割实验,实验结果表明了该方法的有效性和可靠性. 相似文献
2.
3.
为了有效地分割灰度不均匀图像,提出了一种区域自适应主动轮廓模型,在该模型中,定义了一个包含全局能量项和局部能量项的能量泛函。在算法的初期,全局能量项占主导地位,它具有收敛速度快、对初始轮廓不敏感的优点。在算法的后期,局部能量项占主导地位,它具有定位精度高的优点。理论分析和实验结果表明,该模型具有收敛速度快、分割精度高、对初始轮廓不敏感等优点。 相似文献
4.
水平集方法的诞生有效解决了以前算法不能解决的在曲线演化过程中的拓扑变化问题,其核心是利用水平集这一数学理论来对能量函数进行极小值求解的曲线演化过程,通过求解极小值最终获取目标轮廓从而达到图像分割的目的。为了解决不同应用领域的图像处理问题,各种相应的基于水平集方法的图像分割算法已被提出,大量的研究者仍在不断地改进和提高这些算法的效率和有效性。对现有的用于部分图像分割的水平集方法进行了综述,主要介绍传统水平集方法、无重新初始化水平集方法、连续水平集方法以及最近相关的改进方法,并简要讨论了各种方法的优缺点以及应用情况,最后指出了水平集方法进一步研究的方向。 相似文献
5.
目的 视盘及视杯的检测对于分析眼底图像和视网膜视神经疾病计算机辅助诊断来说十分重要,利用医学眼底图像中视盘和视杯呈现椭圆形状这一特征,提出了椭圆约束下的多相主动轮廓模型,实现视盘视杯的同时精确分割。方法 该算法根据视盘视杯在灰度图像中具有不同的区域亮度,建立多相主动轮廓模型,然后将椭圆形约束内嵌于该模型中。通过对该模型的能量泛函进行求解,得到椭圆参数的演化方程。分割时首先设定两条椭圆形初始曲线,根据演化方程,驱动曲线分别向视盘和视杯方向进行移动。当轮廓线到达视盘、视杯边缘时,曲线停止演化。结果 在不同医学眼底图像中对算法进行验证,对算法抗噪性、不同初始曲线选取等进行了实验,并与多种算法进行了对比。实验结果表明,本文模型能够同时分割出视盘及视杯,与其他模型的分割结果相比,本文算法的分割结果更加准确。结论 本文算法可以精确分割医学眼底图像中的视盘和视杯,该算法不需要预处理,具有较强的鲁棒性和抗噪性。 相似文献
6.
图像分割是医学三维重建、医学可视化等的基础,对疾病的诊断和治疗有着重要的临床意义,目前,用于医学图像分割的算法很多,而活动轮廓模型(Active Contour Model)的提出则是这个领域的一个重大突破。介绍活动轮廓模型从参数活动轮廓模型到几何活动轮廓模型的发展过程及发展现状,提出活动轮廓模型的研究和发展方向。 相似文献
7.
图像分割是医学三维重建、医学可视化等的基础,对疾病的诊断和治疗有着重要的临床意义,目前,用于医学图像分割的算法很多,而活动轮廓模型(Active Contour Model)的提出则是这个领域的一个重大突破。介绍活动轮廓模型从参数活动轮廓模型到几何活动轮廓模型的发展过程及发展现状,提出活动轮廓模型的研究和发展方向。 相似文献
8.
9.
传统C-V模型分割图像利用图像区域特征,忽略
了边缘等能够反应图像细节的特征。为了达到更好的图像分割效果,对于这些细节信息的处理则显得尤为重要。图像的梯度信息在边缘区域具有较大幅值,在同质区域具有较小幅值,因而可以用图像梯度来反映图像的边缘信息。把边缘信息融入C-V模型,利用同质区域信
息和边缘信息控制曲线演化,则可以达到更好的分割效果。本文提出的新模型克服了C-V模型的一些
缺陷,对背景灰度不均匀或含弱边缘的图像能够获得更好的分割效果。 相似文献
10.
对Chan-Vese提出的基于简化Mumford-Shah区域最优划分模型和测地线主动轮廓模型在水平集框架下的物理机理进行了分析,在充分考虑其模型优点的基础上,通过构造新的能够整合局部边缘信息和全局区域信息的演化函数对上述模型所存在问题进行了针对性处理,得到了一种新的水平集图像分割模型。人工合成图像和红外光学图像的仿真结果表明,在同样的模型参数条件下,该文模型具有比传统CV模型和GAC模型更高的演化效率和分割质量。 相似文献
11.
12.
13.
基于区域的局部二值拟合模型在处理灰度不均匀图像方面有较大优势,但其只考虑原始图像灰度的平均统计信息,对于包含大量噪声的图像通常很难获得理想的效果。为克服上述缺陷,提出一种基于原始图像和差分图像统计信息的分割模型。该模型在原始图像灰度统计信息的基础上,加入差分图像信息,分别对原始图像和差分图像构造以高斯函数为核函数的能量方程,并运用梯度下降法求解,驱使活动轮廓向目标边缘演化。实验结果表明,与传统活动轮廓模型相比,该模型能正确提取含有噪声和信噪比低的图像,同时对初始轮廓曲线有更高的鲁棒性。 相似文献
14.
图像分割中分段光滑Mumford-Shah模型的水平集算法 总被引:14,自引:2,他引:14
图像分割和轮廓提取在计算机视觉和模式识别中具有重要意义,基于主动轮廓模型的图像分割和轮廓提取是目前研究热点,分析了Mumford—Shah模型的主动轮廓新的视觉机制;并推导了简化的分段光滑水平集模型,通过构造具有柔性距离函数,对迭代步骤中水平集函数重新初始化,结合本质上无振荡格式(ENO scheme)和预测校正格式,提出了一种新的有限差分算法,该算法不但能提取多个具有不同凹凸拓扑结构和灰度差异物体的轮廓,而且能保持分割后物体的灰度特性。最后给出了若干算例,算例表明,该水平集算法具有数值稳定性,不会出现振荡现象。 相似文献
15.
16.
基于局部区域二相拟合(LBF)模型的医学图像分割方法,对初始轮廓敏感并仅能分割单类目标,若手动选取的初始轮廓不合适,将导致算法耗时过大甚至分割失败。针对上述不足,提出联合模糊C均值(FCM)聚类的LBF模型自动分割算法。对待分割图像进行FCM聚类,将得到的目标类隶属度值变换为适用于LBF模型的水平集函数初始值,利用LBF模型从该初始值开始演化直至收敛,从而完成分割。合成图像及血管和脑部图像的分割实验结果表明,该算法能够自动获取合适的初始值,有效解决LBF模型对初始轮廓敏感的问题,减少迭代次数,而且通过选择不同的FCM聚类结果,可以实现对多类目标的分割。 相似文献