首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrated collector storage (ICS) solar water heaters with stationary compound parabolic concentrating (CPC) reflectors are designed and test results are presented. The systems consist of single and double cylindrical horizontal tanks properly placed in truncated symmetric and asymmetric CPC reflector troughs. The suggested designs aim to achieve low cost systems with improved performance by the reduction of their thermal losses and the increase of water temperature rise by using the non-uniform distribution of solar radiation on the absorber surface. Four experimental models were constructed and tested outdoors to determine their mean daily efficiency and thermal losses during the night. Test results showed that asymmetric CPC reflectors contribute to lower thermal losses and the two connected in series cylindrical storage tanks result in effective water temperature stratification. The system with the single cylindrical storage tank and the symmetric CPC reflector performs satisfactorily during the day as well as during the night and regarding its simpler design it could be considered cost effective among the studied ICS systems. A typical thermosiphonic system with flat plate collector was tested for performance comparison, by which the improved daily efficiency of ICS systems and also their moderate water storage heat preservation during the night were confirmed.  相似文献   

2.
The use of a horizontal cylindrical water storage tank contributes to pressure resistant, low height and efficient ICS solar systems. These systems can satisfactorily achieve water heating when the cylindrical storage tank is combined with stationary CPC or involute type curved reflectors. The diameter of the cylindrical storage tank determines the length of the reflectors, the system depth and the ratio of the stored water per aperture area. In these solar systems the storage tank can be partially thermally insulated to suppress thermal losses from it to the ambience. We constructed four experimental models with truncated symmetric CPC reflectors, two with 90° and other two with 60° of acceptance angle, half of them without and half with a 1/4 thermally insulated storage tank cylindrical surface. In addition, we constructed two ICS systems with involute reflectors, with acceptance angle 180°, one without and the other one with a 1/4 thermally insulated storage tank. The six ICS systems were tested under the same weather conditions and without water drain, to determine their stored water temperature variation, mean daily efficiency and thermal losses during night. The results showed that CPC reflectors contribute to efficient operation of systems day and night, while involute reflectors mainly to the water heat preservation during night.  相似文献   

3.
A novel integrated collector storage solar water heater (ICSSWH) was designed, optically analysed and experimentally studied. The unit was based around a heat retaining ICS vessel design consisting of two concentric cylinders mounted horizontally inside a stationary truncated asymmetric compound parabolic concentrating (CPC) reflector trough. The annulus between the cylinders was partially evacuated and contained a small amount of water, which changed phase at low temperature, producing a vapour and creating a thermal diode transfer mechanism from the outer absorbing surface to the inner storage vessel surface. The absorbing outer vessel surface covered with selective absorber film and was partially exposed to solar radiation. The remaining vessel surface area (including the vessel ends) was thermally insulated to improve heat retention during the night. Curved reflectors with a high reflectance along with high transmittance glazing were also used to improve effective operation of the ICS system. The thermal behaviour of the ICS system was compared to that of a Flat Plate Thermosiphonic Unit (FPTU). The experimental results showed that the ICS system is as effective during daily operation as it is during the night. Furthermore, the thermal loss coefficient during night gives similar values between the ICS system and FPTU.  相似文献   

4.
ICS solar systems with two water tanks   总被引:3,自引:0,他引:3  
Integrated collector storage (ICS) systems are compact solar water heaters, simple in construction, installation and operation. They are cheaper than flat plate thermosiphonic units, but their higher thermal losses make them suitable mainly for application in locations with favourable weather conditions. Aiming to the achievement of low system height and satisfactory water temperature stratification, new types of ICS systems with two horizontal cylindrical storage tanks, properly mounted in stationary CPC reflector troughs are suggested. The non-uniform distribution of solar radiation on the two absorbing surfaces is combined with the seasonal sun elevation, resulting to effective water heating. In addition, the inverted absorber concept design can be applied to ICS systems with two storage tanks. In this paper, we present the design and performance of double tank ICS solar systems, which are based on the combination of symmetric and asymmetric CPC reflectors with water storage tanks. The analytical equations of the collector geometry of all models are calculated with respect to the radius of the cylindrical water storage tank and the reflector rim angles. Experimental results for the variation of the water temperature inside storage tanks, the mean daily efficiency and the coefficient of thermal losses during night are given for all experimental models. The tests were performed without water draining and the results show that the double tank ICS systems are efficient in water temperature rise during day and satisfactory preservation of the hot water temperature during night, with the upper storage tank being more effective in performance in most of the studied models.  相似文献   

5.
Two types of ICS solar water heaters designed, constructed and tested. The systems consist of two cylindrical storage tanks, which are connected in series and are horizontally incorporated in a stationary asymmetric CPC type mirror. The efficient operation of the system is due to the thermal losses suppression of the two inverted cylindrical surfaces and the effective use of the two tanks during sunshine period. Low cost and durable materials are used to construct the systems. The mean daily efficiency and the thermal performance of the hot water storage during night are calculated from outdoor experimental data. The results show that the proposed ICS systems are efficient and suitable for practical use as DHW systems.  相似文献   

6.
Experimental study of CPC type ICS solar systems   总被引:1,自引:0,他引:1  
Extensive experimental study on solar water heaters, which were developed in our laboratory, is presented. These solar devices are integrated collector storage (ICS) systems with single horizontal cylindrical storage tank properly placed in symmetric CPC type reflector trough. In this paper we study ICS solar systems, which differ in storage tank diameter and correlate their thermal performance and the ratios of the stored water volume per aperture area and also per total external surface area. Based on the results of this study and aiming to achieve improved ICS systems, we considered an effective tank diameter and we extracted by outdoor tests the performance of a number of experimental models differing in the absorbing surface, reflector and transparent cover. We calculated the mean daily efficiency and the thermal loss coefficient during night of each system combination. In addition, 24 h and four days operation diagrams of the variation of water temperature of the studied ICS systems are compared with the corresponding diagrams of two flat plate thermosiphonic units with mat black and selective absorbing surface, respectively. The experimental results show that ICS system with selective absorbing surface, high transmissivity of the transparent cover and high reflectance of its reflector surface performs efficiently enough, both during the day and night operation, approaching the thermal performance of the corresponding thermosiphonic unit of flat plate collector with selective absorber.  相似文献   

7.
An Integrated Collector Storage (ICS) solar water heater was designed, constructed and studied with an emphasis on its optical and thermal performance. The ICS system consists of one cylindrical horizontal tank properly mounted in a stationary symmetrical Compound Parabolic Concentrating (CPC) reflector trough. The main objective was the design and the construction of a low cost solar system with improved thermal performance based on the exploitation of the non-uniform distribution of the absorbed solar radiation on the cylindrical storage tank surface. A ray-tracing model was developed to gauge the distribution of the incoming solar radiation on the absorber surface and the results were compared with those from a theoretical optical model based on the average number of reflections. The variation of the optical efficiency as function of the incident angle of the incoming solar radiation along with its dependence on the month during annual operation of ICS system is presented. The ICS device was experimentally tested outdoors during a whole year in order to correlate the observed temperature rise and stratification of the stored water with the non-uniform distribution of the absorbed solar radiation. The results show that the upper part of the tank surface collects the larger fraction of the total absorbed solar radiation for all incident angles throughout the year. This is found to have a significant effect on the overall thermal performance of the ICS unit. In addition, the presented results can be considered important for the design and the operation of ICS systems consisting of cylindrical tank and CPC reflectors.  相似文献   

8.
Since a majority of residential and industrial building hot water needs are around 50°C, an integrated solar water heater could provide a bulk source that blends collection and storage into one unit. These collectors incorporate thermal storage within the collector itself. The storage pipe surface serves as the absorber surface. Most ICS systems use only one tank, but some use a number of tanks in series. While the simplicity of ICS systems is attractive, they are generally suitable only for applications in mild climates with small thermal storage requirements. A multi-tube ICS solar hot water system with eight cylindrical water storage tanks (pipes) in horizontal (East-West) orientation was designed and outdoor tests of experimental model were performed in mild climate of north (Caspian Sea) region of Iran. Experimental results such as water temperature profiles, mean daily efficiency, water temperature stratification and thermal losses during night are presented and discussed for this model. Experimental results showed that the daily mean efficiency is comparable to other ICS systems and also acceptable thermal performance of this type of ICS system has been observed.  相似文献   

9.
The aim of this work is to develop a numerical code able to predict the thermal behavior of a double tank integrated collector storage system (ICS) with compound parabolic concentrator (CPC). The developed numerical model is based on the detailed analysis of the different forms of heat transfers occurring in the ICS system. The balance equations of each element of the system have been established and solved by means of a transient algorithm. A prototype of an ICS device was constructed and experimentally tested outdoors in order to observe the variation of water temperature in the storage tanks. The experimental results are presented and the validity of the model is examined by comparison of the theoretical results with experiments which demonstrates a good agreement. The numerical model is then used to perform theoretical study on the present ICS solar heater. The simulation results of the variation of the thermal efficiency are presented. The results of the yearly parametric study of the effect of the concentrators reflectivity, the absorber emissivity and the use of double glazing on the thermal performance of the ICS system are also presented and discussed. The developed numerical tool within this work can be considered as important for the study of double tanked ICS solar water heater regarding its transient thermal behavior.  相似文献   

10.
The advantage of PV–thermal hybrid systems is their high total efficiency. By using concentrating hybrid systems, the cost per energy produced is reduced due to simultaneous heat and electricity production and a reduced PV cell area. In this article, the optical efficiency of a water-cooled PV–thermal hybrid system with low concentrating aluminium compound parabolic concentrators is discussed. The system was built in 1999 in Älvkarleby, Sweden (60.5° N, 17.4° E) with a geometric concentration ratio of C=4 and 0.5 kWp electric power. The yearly output is 250 kWh of electricity per square metre solar cell area and 800 kWh of heat at low temperatures per square metre solar cell area. By using numerical data from optical measurements of the components (glazing, reflectors, and PV cells) the optical efficiency, ηopt, of the PV–CPC system has been determined to be 0.71, which is in agreement with the optical efficiency as determined from thermal and electrical measurements. Calculations show that optimised antireflection-treated glazing and reflectors could further increase the electric power yield.  相似文献   

11.
Packed bed thermal energy storage (TES) systems have been identified in the last years as one of the most promising TES alternatives in terms of thermal efficiency and economic viability. The relative simplicity of this storage concept opens an important opportunity to its implementation in many environments, from the renewable solar‐thermal frame to the industrial waste heat recovery. In addition, its implicit flexibility allows the use of a wide variety of solid materials and heat transfer fluids, which leads to its deployment in very different applications. Its potential to overcome current heat storage system limitations regarding suitable temperature ranges or storage capacities has also been pointed out. However, the full implementation of the packed bed storage concept is still incomplete since no industrial scale units are under operation. The main underlying reasons are associated to the lack of a complete extraction of the full potential of this storage technology, derived from a successful system optimization in terms of material selection, design, and thermal management. These points have been evidenced as critical in order to attain high thermal efficiency values, comparable to the state‐of‐the‐art storage technologies, with improved technoeconomic performance. In order to bring this storage technology to a more mature status, closer to a successful industrial deployment, this paper proposes a double approach. First, a low‐cost by‐product material with high thermal performance is used as heat storage material in the packed bed. Second, a complete energetic and efficiency analysis of the storage system is introduced as a function of the thermal operation. Overall, the impact of both the selected storage material and the different thermal operation strategies is discussed by means of a thermal model which permits a careful discussion about the implications of each TES deployment strategy and the underlying governing mechanisms. The results show the paramount importance of the selected operation method, able to increase the resulting cycle and material usage efficiency up to values comparable to standard currently used TES solutions.  相似文献   

12.
A parametric analysis is conducted for space cooling systems based on cold water flowing, during the night, within regularly arranged pipes embedded in a layer of phase change material (PCM), located among the structural layers of the ceiling. The introduced PCM layer in conjunction with night cooling add to the usual ceiling cooling systems offers the advantages of low energy consumption, high cool storage capacity, operation under reduced night electricity price, smoothing of electricity consumption by eliminating daily peak loads, improved thermal comfort and elimination of ceiling dripping. Our parametric analysis is based on a transient three‐dimensional finite‐difference solution of the related heat‐transfer problem for various values of all the main system parameters. PCM phase change process is simulated by using the effective thermal capacity function, which is determined experimentally for PCM suitable for air‐conditioning applications. Our tests showed that the main parameters of the system are pipe spacing, PCM layer thickness, pipe depth within the ceiling, cooling water inlet temperature, night cooling duration and PCM properties (thermal conductivity, phase change heat and ends of phase change temperature range). The effect of all the above parameters is analysed and suggestions are made for selecting the proper combinations of their values in order to obtain the lowest energy consumption in conjunction with the highest level of thermal comfort. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The distribution of solar irradiance on the absorbing surface of a typical integrated collector storage (ICS) system combined with reflector troughs is commonly studied by means of ray tracing techniques. A conceptually different alternative is offered by the method of the average number of reflections (ANR). In the present work, the latter is employed for the systematic optical study of realistic ICS models. In all cases, the solar devices consist of twin cylindrical storage tanks which are mounted on top of stationary asymmetrical CPC‐type reflectors. The emphasis of the current research is mainly placed on the evaluation of the ANR reliability for the calculation of the optical efficiency of the related twin‐tanked devices. Additionally, useful operational parameters, such as the optical performance of the proposed geometries, are also determined. The behavior of the tested ICS systems reveals that the optical efficiency may vary in the range of 0.75 to 0.91, exhibiting a strong dependence on the geometric parameters of the solar devices. The highest efficiency is achieved by the systems which combine large reflecting area and storage tanks in close proximity.  相似文献   

14.
O. Helal  B. Chaouachi  S. Gabsi 《Solar Energy》2011,85(10):2421-2432
An integrated collector storage (ICS) consisting of a single cylindrical horizontal tank placed in a reflector composed of three parabolic branches is designed and geometric characteristics are determined. The suggested design aims to cover the need of hot water of a family composed of four persons. Based on this target, its geometric characteristics: reflector geometry, aperture, reflector length, are derived.The comparison between this system and two other systems of solar water heater, composed of a storage tank with asymmetrical CPC and symmetrical CPC, shows important thermal performances despite the simplicity and the little cost of our collector. The first experimental results are given and its comparison with the theoretical results demonstrates a good agreement.  相似文献   

15.
A detailed comparative assessment is reported on the thermal performance of integrated collector‐storage (ICS) solar water heaters with various strategies for reducing top heat losses. The objective of this investigation is to assess and compare heat loss reduction strategies. The shape of ICS solar water heater considered in present investigation is rectangular. The thermal performance of the solar water heater is evaluated and analyzed for the following cases: (1) single glass cover without night insulation; (2) single glass cover with night insulation; (3) double glass cover without night insulation; (4) transparent insulation with single glass cover; and (5) insulating baffle plate with single glass cover. Energy balances are developed for each case and solved using a finite difference technique. The numerical assessment of the system performance is performed for a typical July day in Toronto. Each strategy is observed to be beneficial, reducing top heat losses, and improving system performance. The greatest performance enhancements are observed for the water heater with a single glass cover and night insulation and for the system with a double glass cover and without night insulation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
作者对一种带透明蜂窝盖板和辅助反射面的整体式(ICS)太阳热水器进行了实验研究。该太阳热水器采用截面为三角形的水箱,水箱背面和侧面用30mm聚苯乙烯泡沫隔热,其它两个面为吸热面。底吸热面利用辅助反射面加热,而上吸热面则覆盖5cm的透明蜂窝及2mm的有机玻璃板。这种设计加大了ICS太阳热水器的吸热面积,同时也降低了吸热面向环境的热损。对实验结果的分析表明,该热水器的热效率不高,但保温性能很好。  相似文献   

17.
The design and construction of an Integrated Collector Storage (ICS) system is presented in this paper. The main advantage that such a collector system presents, with respect to conventional flat-plate collectors, is the fact that it is of a very low profile. The main disadvantage of these collectors comes from the design of the system, i.e. with the receiver of the collector being also the storage vessel, it is not possible to insulate it properly and there are significant heat losses during the night. System modelling and optimisation is carried out by the use of a computer code written for the purpose. Performance results presented are in good agreement with the predicted results, especially for the end-of-day storage temperature which is predicted to within 5.1%. The initial cost of the system presented here is 13% cheaper than the corresponding flat-plate (FP) collector of the same aperture area and storage volume. Additionally, the economic analysis of the two systems, performed with the F-Chart program, showed a yearly F-value of 0.85 for the ICS system compared to 0.83 for the FP system, a pay-back period of nine years for the ICS system, compared to 11 years for the FP system and a life cycle saving of C£330 for the ICS system compared to C£201 for the FP system.  相似文献   

18.
In previous investigations, humidification-dehumidification (HDH) solar-assisted desalination systems were designed produce the daily fresh water during sun hours which lead to big sizes and unsteady systems. In the present study, integration of solar-assisted HDH desalination system with heat recovery and thermal energy storage unit is developed to enhance system productivity, reduces auxiliary power consumptions and system size and assure system continuous operation. The mathematical modelling based on energy and mass conservation equations is presented and solved using iterative techniques by C++ and engineering equation solver software. Detailed parametric study of the developed system is conducted for wide ranges of operating conditions and design parameters to study the effects of integrating the HDH system with solar collectors, heat recovery and thermal energy storage units on the system performance. The results revealed that (i) this integration improves system productivity and reduces operating cost, (ii) increasing air to water mass ratio and sea water temperature and decreasing ambient humidity decrease water productivity and gained output ratio (GOR) and increase operating cost parameter (OCP) and (iii) increasing air inlet temperature and sea water flow rates increase GOR and decrease OCP. Comparison with previous systems showed that the proposed system reduces the electric heating power of the system at solar noon by 37% at MR = 0.5 and gives daily fresh water productivity (123.7 kg/h) two times more than previous systems with comparable OCP (0.099 $/kg).  相似文献   

19.
Integral Collector/Storage (ICS) solar water heating systems suffer substantial heat loss during periods of low insolation or at night. Methods to reduce aperture heat loss include moveable insulated lids/shutters, transparent insulating glazing materials and selective glazing/absorber coatings. All of these approaches involve trade-offs with reduction in performance and/or an increase in cost. A novel ICS vessel design to mitigate heat loss is proposed. An ICS vessel utilising an inner sleeve arrangement is shown to reduce heat loss by up to 20%. This paper examines four inner sleeve design configurations, several of which demonstrate an increase in the heat retention capability over existing vessels, and an optimised design is presented.  相似文献   

20.
Integrated collector storage (ICS) systems offer a solution to reduce the height of the conventional flat-plate thermosiphon type collectors. The initial system developed had an aperture area of 1.77 m2, a receiver diameter of 200 mm, a concentration ratio of 1.47 and total water storage volume of 65 litres. The main disadvantage of the ICS systems comes from their design, i.e., because the collector absorber is also the storage cylinder it is not possible to insulate it properly and therefore there are significant losses during the night. The main cause of these losses is the convection currents created during the night, circulating around the top glass cover. Another disadvantage of the system is its draw-off characteristics. Because the water cylinder/absorber is horizontal there is very little stratification of the water in the cylinder. It is suggested that a primary 110 mm diameter cylinder is introduced at the space between the main cylinder and the glass. The cold water is introduced directly to the primary cylinder, which feeds the main cylinder. With this modification the convection currents are drastically reduced due to the obstruction created by the primary vessel, thus reducing the night thermal losses. Also as the cold water is introduced first to the primary cylinder there is no direct mixing of the two streams thus greatly improving the system draw-off characteristics. This modification creates an 8% increase in the total cost of the system, which is reasonable, if the above benefits are considered  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号