首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanosized particles of strontium bismuth vanadate SrBi3VO8 were prepared via the Pechini method on the base of citrate‐complexation route. The samples were characterized using X‐ray powder diffraction (XRD), scanning electron microscope (SEM), energy dispersive X‐ray spectra (EDX), X‐ray photoelectron spectroscopic (XPS), and UV–vis absorption spectrum. This bismuth‐containing vanadate presents an efficient absorption in the UV–visible light wavelength region with a narrow band‐gap energy of 2.36 eV and an indirect allowed electronic transition. It is well‐known that hybridization of the 6s and 6p orbitals of Bi3+ could result in lone electron pair and yield some very interesting properties. The photocatalytic activities of SrBi3VO8 nanoparticles were evaluated by the photodegradation of methylene blue (MB) under visible light irradiation in air atmosphere. These results indicate that SrBi3VO8 could be a potential photocatalyst driven by visible light. To understand the charge generation and separation process, the luminescence as well as the decay lifetimes was investigated in the same samples for photocatalysis.  相似文献   

2.
A visible‐light‐driven photocatalyst based on the well‐known cathode material of NASICON‐type Li2Ni2(MoO4)3 was prepared by a modified Pechini method. The sample was characterized by X‐ray diffraction, scanning electron microscope, transmission electron microscopy, and UV‐vis absorption spectrum. The average size of Li2Ni2(MoO4)3 particle is below 50 nm. NASICON nanoparticles Li2Ni2(MoO4)3 has an efficient absorption in the UV‐visible light wavelength region with a direct allowed electronic transition of 2.07 eV. The photocatalytic properties of Li2Ni2(MoO4)3 were evaluated by the photodegradation of methylene blue (MB). Li2Ni2(MoO4)3 has an efficient photocatalytic activity and could be a potential photocatalyst driven by visible‐light. The photocatalytic activity was discussed on the optical absorption and special hexagonal tunnel structure connected by optical active centers of MoO4 and NiO6 and its good conductivity.  相似文献   

3.
Niobium‐doped Titanium dioxide (Nb:TiO2) transparent films were successfully deposited on glass substrates using a non‐aqueous sol‐gel spin coating technique. The effect of Nb concentration on the structural and photocatalytic properties of Nb:TiO2 films was studied using X‐ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and UV visible spectroscopy. The films with 12 at.% (atomic percent) Nb doped TiO2 showed excellent photocatalytic activity through 97.3% degradation of methylene blue (MB) after 2 h of UV irradiation.  相似文献   

4.
To make better use of solar light, a new Bi2WO6/Cu1.8Se photocatalyst active to visible and near‐infrared light has been synthesized by a facile hydrothermal method. The composites were characterized by X‐ray diffractometry (XRD), scanning electron microscopy (SEM), UV‐vis diffuse reflectance spectroscopy (DRS), and photoluminescene (PL). The photocatalytic activities of Bi2WO6/Cu1.8Se are evaluated by degrading Congo red solution and hydrogen generation from water. It was found that the molar percentage of Cu1.8Se had great effects on the morphology and photocatalytic property of the Bi2WO6/Cu1.8Se heterojunctions, and the composite with suitable molar amount of Cu1.8Se exhibits much enhanced photocatalytic activity for Congo red degradation under visible and near‐infrared light irradiation and for hydrogen generation under visible light compared to Bi2WO6. The significant improvement photocatalytic activity of the composite could be attributed to its good light absorption, suitable band gap structure, and effective separation of photogenerated electron‐hole pairs of Bi2WO6/Cu1.8Se heterojunction. This work presents an efficient multifunction photocatalyst owning the activity both for water splitting under visible light and for organic contaminants decomposition under visible‐near‐infrared light.  相似文献   

5.
In this report, chitosan (CS) encapsulated titanium dioxide (TiO2) nanohybrid was prepared by chemical precipitation method. Fourier transform infrared spectroscopy (FT‐IR) and X‐ray diffraction (XRD) confirmed the formation of nanohybrid. Transmission electron microscopy (TEM) analysis showed the immobilization of TiO2 nanoparticles on the surface of CS. The nanohybrid was also characterized by thermogravimetric analysis (TGA) and zeta potential. The nanohybrid exhibited high photocatalytic activity as evident from the degradation of methylene blue (MB) dye. The result revealed substantial degradation of the MB dye (90%) under UV‐light illumination. The catalytic efficiency was unaltered even after five cycles of reuse. In addition, the nanohybrid exhibited a superior antibacterial activity of 100% within 24 h of treatment against Escherichia coli (E. coli) was measured by colony forming units (CFU). POLYM. COMPOS., 35:327–333, 2014. © 2013 Society of Plastics Engineers  相似文献   

6.
Bi3TiNbO9 nanoparticles with an acceptor dopant of Ni2+ ion were prepared by the conventional Pechini sol–gel synthesis. The X‐ray polycrystalline diffraction measurements (XRD) and the Rietveld refinements of Bi3TiNbO9 samples were completed. The surface property of Bi3TiNbO9 nanoparticles was investigated by transmission electron microscope, scanning electron microscope), and N2 adsorption–desorption isotherms. Bi3TiNbO9 nanoparticles showed an optical band gap with energy of 3.1 eV in the UV region. While the Ni2+‐doping could greatly reduce the band energy of Bi3TiNbO9:xNi2+ nanoparticles to 2.79 eV (x = 0.05) and 2.61 eV (x = 0.1). This indicates that the Ni‐doped samples could be excited by UV–visible light. The photocatalytic abilities were tested by the photodegradation on methylene blue solution (MB) and phenol solutions excited by visible light. Accordingly, the photocatalytic activity was improved by the Ni‐doping in B‐sites in this Aurivillius‐type structure. The results concluded that Bi3TiNbO9:Ni2+ would be a possible candidate as a visible light‐driven photocatalyst. The effective photocatalysis was discussed on the structure characteristic and experiment such as polarized Aurivillius (Bi2O2)2+ layers, luminescence, and decay lifetimes, etc.  相似文献   

7.
BACKGROUND: Mercury electrodeless discharge lamps (Hg‐EDLs) were used to generate UV radiation when exposed to a microwave field. EDLs were coated with doped TiO2 in the form of thin films containing transition metal ions Mn+ (M = Fe, Co, Ni, V, Cr, Mn, Zr, Ag). Photocatalytic degradation of mono‐chloroacetic acid (MCAA) to HCl, CO2, and H2O, and decomposition of Rhodamine B on the thin films were investigated in detail. RESULTS: Polycrystalline thin doped TiO2 films were prepared by dip‐coating of EDL via a sol–gel method using titanium n‐butoxide, acetylacetone, and a transition metal acetylacetonate. The films were characterized by Raman spectroscopy, UV/Vis absorption spectroscopy, X‐ray photoelectron spectroscopy (XPS), electron microprobe analysis and by atomic force microscopy (AFM). The photocatalytic activity of doped TiO2 films was monitored in the decomposition of Rhodamine B in water. Compared with the pure TiO2 film, the UV/Vis spectra of V, Zr and Ag‐doped TiO2 showed significant absorption in the visible region, and hence the photocatalytic degradation of MCAA had increased. The best apparent degradation rate constant (0.0125 min?1), which was higher than that on the pure TiO2 film by a factor of 1.7, was obtained with the Ag(3%)/TiO2 photocatalyst. The effect of doping level of vanadium acetylacetonate on the photocatalytic efficiency of the V‐doped TiO2 was determined. CONCLUSIONS: Transition metal ion‐doped TiO2 thin films showed significant absorption in the visible region. The metal doped TiO2 photocatalyst (with an appropriate amount of V, Zr and Ag) on the Hg‐EDLs increased the degradation efficiency of MCAA in a microwave field. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
BACKGROUND: The aim of this study was to investigate improvement of the photocatalytic activity of visible‐light driven nitrogen‐modified TiO2 (N‐TiO2) powder toward methyl blue (MB) and direct blue‐86 (DB‐86) dyes. The Taguchi method with an L9 orthogonal array was applied to plan the synthesis parameters, i.e. nitrogen sources, nitrogen source concentrations, stirring time and calcined temperatures. 95% confirmation experiments were undertaken to verify the effectiveness of the Taguchi method. RESULTS: All N‐TiO2 photocatalysts were shifted toward the visible light region with the optical band gap (Eg). Nitrogen source concentrations were significant parameters for the photocatalytic decolorization rate constants (k values). In comparison with pure TiO2, the photodecolorization behavior of N‐TiO2 toward DB‐86 was superior with a reaction rate constant of 1.68 × 10?3 min?1, and a 4 h photodecolorization efficiency of 34%. CONCLUSION: The Taguchi method was reported to alter the surface properties of commercial Degussa P25 TiO2, which could then be used as a visible‐light driven photocatalyst. The visible‐light‐driven photocatalyst was investigated to determine material characteristics. Greater photodecolorization of MB and DB‐86 dye pollutants using optimally‐prepared N‐TiO2 under visible light irradiation was successfully obtained. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
In this study, Zr-Ag co-doped TiO2 (ZAT) photocatalyst films having varied numbers of layers (1, 2, 3, and 4) have been developed to coat on ceramic tile substrates by sol-gel spin coating technique. The specimens were tested to determine antibacterial activity against Escherichia coli and the capability to degrade gaseous formaldehyde under visible light. X-ray diffraction, ultraviolet and visible absorption spectroscopy, water contact angle, and scanning electron microscopy were applied to characterize the structural and morphological properties of the samples. The photocatalytic reactivity of the nanocomposite films was investigated by the decolorization of methylene blue (MB) dye under visible light irradiation. The results showed that the two-layer ZAT photocatalyst film on ceramic tile exhibited the highest photocatalytic decolorization of MB, with 60.36% efficiency. The ZAT tile had formaldehyde degradation efficiency up to 32.74% within only 6 h under visible light irradiation, higher than that of the bare ceramic tile (4.90%). Additionally, the ZAT thin films could enhance anti-E. coli activity and could be capable of degrading air pollution.  相似文献   

10.
A phase transformation of micron‐sized TiO2 powder from anatase to rutile was attempted by heat‐treatment in order to generate a new mixed crystal TiO2 with high associated photocatalytic activity. Heat‐treated micron‐sized TiO2 powders at different transition stages were characterized by X‐ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT‐IR) and transmission electron microscopy (TEM) methods. The tests of photocatalytic activity of the heat‐treated micron‐sized TiO2 powders were conducted by the photocatalytic degradation of Rhodamine B and Acid Red B under visible light irradiation. The results indicate that mixed crystal TiO2 photocatalyst heat‐treated at 400 °C for 60 min shows the highest photocatalytic activity. It can effectively decompose the Rhodamine B and Acid Red B in aqueous solution after 6 h visible light irradiation. A remarkable improvement in photocatalytic activity of TiO2 is caused by the formation of combined rutile–anatase phases and separation of photogenerated electron–hole pairs. Copyright © 2007 Society of Chemical Industry  相似文献   

11.
Amorphous oxide film was prepared on the titanium substrate by plasma electrolytic oxidation (PEO) technology in acidic electrolyte consisting of tungstate and then subject to calcination in air. Films were characterized by scanning electron microscopy, energy dispersive X‐ray, X‐ray diffraction, X‐ray photoelectron spectroscopy, photoluminescence, and UV‐Vis DRS before and after calcination, respectively. Calcined film consisted of anatase and WO3, showing more open structure compared with uncalcined film. Furthermore, the absorption edge of calcined film was shifted to visible light region and the recombination of photo‐induced carriers was inhibited effectively, resulting that WO3/TiO2 composite film produced by PEO technology and calcination should be effective as a visible‐light‐responsive photocatalyst.  相似文献   

12.
BACKGROUND: This research investigated the effect of platinum (Pt) on the reactivity of tungsten oxide (WO3) for the visible light photocatalytic oxidation of dyes. RESULTS: Nanocrystalline tungsten oxide (WO3) photocatalysts were synthesised by a sol‐gel process and employed for the photocatalytic degradation of Methyl Orange under visible light. For comparison commercial bulk WO3 materials were also studied for the same reaction. These materials were fully characterised using X‐ray diffraction (XRD), UV‐visible diffuse reflection spectroscopy and transmission electron microscopy (TEM). The photocatalytic oxidation of iso‐propanol was used as a model reaction to follow the concomitant reduction of molecular oxygen. No reactions occured in the absence of platinum, which is an essential co‐catalyst for the multi‐electron reduction of oxygen. The platinised WO3 catalysts were stable for multiple oxidation–reduction cycles. The results from the catalytic activity measurements showed that platinised nanocrystalline WO3 is a superior oxidation photocatalyst when compared with bulk WO3. Methyl Orange was completely decolourised in 4 h. CONCLUSIONS: The enhanced performance of nanocrystalline Pt‐WO3 is attributed to improved charge separation in the nanosized photocatalyst. Platinum is an essential co‐catalyst to reduce oxygen. This photocatalyst could be applied to the treatment of organic pollutants in wastewater, with the advantage of using visible light compared with the widely studied TiO2, which requires UV light. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
The present work demonstrates a facile route for preparing LaFeO3/rGO nanocomposites comprising of metal oxide nanoparticles and graphene. Structural, morphology, optical and photocatalytic studies of the samples were characterized using powder X-ray diffraction (XRD), FT-IR, Raman, high resolution scanning electron microscopy (HRSEM), high resolution transmission electron microscope (HRTEM), atomic force microscopy (AFM), thermogravimetry (TGA), X-ray photoelectron spectroscopy, UV–visible and photocatalytic. LaFeO3/rGO nanocomposites believed as an effective photocatalyst for the degradation of methyl orange (MO) dye under visible light irradiation. The inclusion of carbon enhances the light absorption of LaFeO3, resulting in the enhanced photocatalytic activity of the nanocomposite. The degradation of MO dye under visible light source was completely achieved using LaFeO3/rGO as a catalyst.  相似文献   

14.
Indium (2.9, 3.5, and 4.9 at. %)‐doped and pristine monoclinic BiVO4 nanoparticles were synthesized by hydrothermal method. They were characterized by high‐resolution scanning electron, field emission scanning electron, transmission electron and high‐resolution transmission electron microscopies, powder X‐ray and selected‐area electron diffractometries, energy‐dispersive X‐ray, Raman, UV‐visible diffuse reflectance, photoluminescence, and solid‐state impedance spectroscopies. The band gap and near‐band‐gap emission of 4.9% In‐doped BiVO4 nanoparticles are larger than those of the rest of the nanomaterials. The charge‐transfer resistance of 4.9% In‐doped BiVO4 is the least. In‐doping enhances visible‐light photocatalytic activity.  相似文献   

15.
An aerochitin–titania (TiO2) composite was successfully synthesized and characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, field emission scanning electron microscopy, and N2 adsorption isotherms. The photocatalytic activity of the composite was investigated on the degradation of the model organic pollutant, methylene blue (MB) dye, under UV irradiation. The aerochitin–TiO2 composite showed excellent adsorptive and photocatalytic activity with a degradation degree of 98% for MB. The first‐order rate constants for the photodegradation MB by TiO2 nanoparticles and aerochitin–TiO2 composite were found to be (3.49 ± 0.04) × 10?3 and (1.82 ± 0.02) × 10?2 min?1. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45908.  相似文献   

16.
BACKGROUND: Unlike many water pollution applications, visible‐light‐driven photocatalysis of gas‐phase pollutants has been reported only rarely. The present study was performed to investigate the feasibility of applying S‐doped visible‐light‐induced TiO2 to treat gas‐phase aromatic hydrocarbons, using a continuous air‐flow annular‐type reactor. RESULTS: The prepared S‐enhanced TiO2 powders, along with a commercially available TiO2 powder (Degussa P‐25), were characterized using diffuse reflectance UV‐VIS‐NIR spectrophotometry, Fourier transform infrared (FTIR) spectrophotometry, X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetry (TG) analyses. A photocatalytic activity test exhibited an increasing trend in degradation reaction rates with increase in flow rate but a decreasing trend in terms of degradation efficiencies. Several experimental conditions induced reasonably high decomposition efficiencies with respect to toluene, ethyl benzene and o,m,p‐xylenes (close to or above 90%), although benzene exhibited a somewhat lower decomposition efficiency. CONCLUSIONS: The S‐doped TiO2 and undoped P25 TiO2 powders exhibited different catalyst characteristics. The results demonstrate that an annular‐type reactor coated with visible‐light‐activated S‐doped TiO2 can serve as an effective tool to treat gas‐phase aromatic hydrocarbon streams. Copyright © 2009 Society of Chemical Industry  相似文献   

17.
Bi1‐xSmxFe1‐yMnyO3 (BSFMO, x = 0.0, 0.05; y = 0.0, 0.05, 0.10, 0.15, 0.20, 0.25) nanoparticles were synthesized by using double solvent sol–gel method. Photocatalytic activity was investigated under UV and visible‐light illumination. The structural, morphological, and optical properties were analyzed by X‐ray diffraction, scanning electron microscopy, and UV‐vis spectroscopy respectively. The crystallite size of BiFeO3 (BFO) decreases from (57.3–17.2 nm) with the increase in Sm and Mn‐doping concentration. The surface morphology shows that the pure and Sm‐doped BFO nanoparticles are irregular in shape but changes to spherical shape after Mn‐doping up to 25%. The band‐gap engineering of BFO nanoparticles is achieved by co‐doping of Sm and Mn. The band‐gap of BFO could be tuned successfully from 2.08–1.45 eV, which may be due to the distortion induced in Fe‐O octahedron and the rearrangement of molecular orbitals. These results give rise to enhanced photocatalytic activity by degradation of organic dyes (MB, CR, and MV) under the visible‐light illumination.  相似文献   

18.
BACKGROUND: In this study, visible‐light‐derived photocatalytic activity of metal‐doped titanium dioxide nanosphere (TS) stacking layers, prepared by chemical vapor deposition (CVD), was investigated. The as‐grown TS spheres, having an average diameter of 100–300 nm, formed a layer‐by‐layer stacking layer on a glass substrate. The crystalline structures of the TS samples were of anatase‐type. RESULTS: Ultraviolet (UV) absorption confirmed that metallic doping (i.e. Co and Ni) shifted the light absorption of the spheres to the visible‐light region. With increasing dopant density, the optical band gap of the nanospheres became narrower, e.g. the smallest band gap of Co‐doped TS was 2.61 eV. Both Ni‐ and Co‐doped TS catalysts showed a photocatalytic capability in decomposing organic dyes under visible irradiation. In comparison, Co‐doped TiO2 catalyst not only displays the adsorption capacity, but also the photocatalytic activity higher than the N‐doped TiO2 catalyst. CONCLUSION: This result can be attributed to the fact that the narrower band gap easily generates electron–hole pairs over the TS catalysts under visible irradiation, thus, leading to the higher photocatalytic activity. Accordingly, this study shed some light on the one‐step efficient CVD approach to synthesize metal‐doped TS catalysts for decomposing dye compounds in aqueous solution. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
Silver and zirconium co‐doped and mono‐doped titania nanocomposites were synthesized and deposited onto polyacrylonitrile fibers via sol–gel dip‐coating method. The resulted coated‐fibers were characterized by X‐ray diffraction (XRD), scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, diffuse reflectance spectroscopy, thermogravimetric analysis, and BET surface area measurement. Photocatalytic activity of the TiO2‐coated and TiO2‐doped coated fibers were determined by photomineralization of methylene blue and Eosin Y under UV–vis light. The progress of photodegradation of dyes was monitored by diffuse reflectance spectroscopy. The XRD results of samples indicate that the TiO2, Ag‐TiO2, Zr‐TiO2, and Ag‐Zr‐TiO2 consist of anatase phase. All samples demonstrated photo‐assisted self‐cleaning properties when exposed to UV–vis irradiation. Evaluated by decomposing dyes, photocatalytic activity of Ag–Zr co‐doped TiO2 coated fiber was obviously higher than that of pure TiO2 and mono‐doped TiO2. Our results showed that the synergistic action between the silver and zirconium species in the Ag‐Zr TiO2 nanocomposite is due to both the structural and electronic properties of the photoactive anatase phase. These results clearly indicate that modification of semiconductor photocatalyst by co‐doping process is an effective method for increasing the photocatalytic activity. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
The SiO2 nanoparticles doped by 10 % mol Cu were prepared via a sol-gel method under process control. The effects of doping and calcination temperature on the structural and photo-catalytic properties of SiO2 nanopowders have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Vis absorption spectroscopy. Cristobalite and tridymite crystalline phases were found at a calcinations temperature range of 900~1200 °C and amorphous phase was formed at a temperature of 800 °C for doped SiO2. The photocatalyst activity was evaluated by photocatalytic degradation kinetics of aqueous methyl orange (MO) under visible radiation. The results show that the photocatalytic activity of the 10 % mol Cu doped SiO2 nanopowders have a larger degradation efficiency than pure SiO2 under visible light at 900 °C temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号