首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
A low‐permittivity dielectric ceramic Li2GeO3 was prepared by the solid‐state reaction route. Single‐phase Li2GeO3 crystallized in an orthorhombic structure. Dense ceramics with high relative density and homogeneous microstructure were obtained as sintered at 1000‐1100°C. The optimum microwave dielectric properties were achieved in the sample sintered at 1080°C with a high relative density ~ 96%, a relative permittivity εr ~ 6.36, a quality factor Q × f ~ 29 000 GHz (at 14.5 GHz), and a temperature coefficient of resonance frequency τf ~ ?72 ppm/°C. The sintering temperature of Li2GeO3 was successfully lowered via the appropriate addition of B2O3. Only 2 wt.% B2O3 addition contributed to a 21.2% decrease in sintering temperature to 850°C without deteriorating the dielectric properties. The temperature dependence of the resonance frequency was successfully suppressed by the addition of TiO2 to form Li2TiO3 with a positive τf value. These results demonstrate potential applications of Li2GeO3 in low‐temperature cofiring ceramics technology.  相似文献   

2.
The crystal structure, microstructure, and microwave dielectric properties of forsterite‐based (Mg1–xNix)2SiO4 (= 0.02–0.20) ceramics were systematically investigated. All samples present a single forsterite phase of an orthorhombic structure with a space group Pbnm except for a little MgSiO3 secondary phase as x > 0.08. Lattice parameters in all axes decrease linearly with increasing Ni content due to the smaller ionic radius of Ni2+ compared to Mg2+. The substitution of an appropriate amount of Ni2+ could greatly improve the sintering behavior and produce a uniform and closely packed microstructure of the Mg2SiO4 ceramics such that a superior × f value (152 300 GHz) can be achieved as = 0.05. The τf value was found to increase with increasing A‐site ionic bond valences. In addition, various additives were used as sintering aids to lower the sintering temperature from 1500°C to the middle sintering temperature range. Excellent microwave dielectric properties of εr~6.9, × f~99800 GHz and τf~?50 ppm/°C can be obtained for 12 wt% Li2CO3‐V2O5‐doped (Mg0.95Ni0.05)2SiO4 ceramics sintered at 1150°C for 4 h.  相似文献   

3.
Low‐fired cobalt niobate (CoNb2O6) microwave dielectric ceramics were prepared through a developed sol–gel process using Nb2O5·nH2O as starting source. A metal‐dioxo‐bridged complex precursor was described on the basis of FT‐IR spectrum. The crystalline phases of calcined powders were characterized by X‐ray diffraction. Nanosized CoNb2O6 particles with orthorhombic α‐PbO2‐type structure were obtained above 750°C. There was no subsequent phase change upon sintering, and all compounds sintered to at least 94% of theoretical density. At 1000°C/4 h, CoNb2O6 ceramics exhibited εr ~ 21.9, Q × f ~ 66 140 GHz (at 8.9 GHz) and τf ~ ?39.7 ppm/°C, having a good potential for low‐temperature cofired ceramic applications.  相似文献   

4.
We report a series of ReVO4 (Re = La, Ce) microwave dielectric ceramics fabricated by a standard solid‐state reaction method. X‐ray diffraction and scanning electron microscopy measurements were performed to explore the phase purity, sintering behavior, and microstructure. The analysis revealed that pure and dense monoclinic LaVO4 ceramics with a monazite structure and tetragonal CeVO4 ceramics with a zircon structure could be obtained in their respective sintering temperature range. Furthermore, LaVO4 and CeVO4 ceramics sintered at 850°C and 950°C for 4 h possessed out‐bound microwave dielectric properties: εr = 14.2, Q × f = 48197 GHz, τf = ?37.9 ppm/°C, and εr = 12.3, Q × f = 41 460 GHz, τf = ?34.4 ppm/°C, respectively. The overall results suggest that the ReVO4 ceramics could be promising materials for low‐temperature‐cofired ceramic technology.  相似文献   

5.
A novel low‐temperature sintering microwave dielectric based on forsterite (Mg2SiO4) ceramics was synthesized through the solid‐state reaction method. The effects of LiF additions on the sinterability, phase composition, microstructure, and microwave dielectric properties of Mg2SiO4 were investigated. It demonstrated that LiF could significantly broaden the processing window (~300°C) for Mg2SiO4, and more importantly the sintering temperature could be lowered below 900°C, maintaining excellent microwave dielectric properties simultaneously. The 2 wt% LiF‐doped samples could be well‐sintered at 800°C and possessed a εr ~ 6.81, a high Q×f ~ 167 000 GHz, and a τf ~ ?47.9 ppm/°C, having a very good potential for LTCC integration applications.  相似文献   

6.
The effects of ZnO and B2O3 addition on the sintering behavior, microstructure, and the microwave dielectric properties of 5Li2O‐1Nb2O5‐5TiO2 (LNT) ceramics have been investigated. With addition of low‐level doping of ZnO and B2O3, the sintering temperature of the LNT ceramics can be lowered down to near 920°C due to the liquid phase effect. The Li2TiO3ss and the “M‐phase” are the two main phases, whereas other phase could be observed when co‐doping with ZnO and B2O3 in the ceramics. And the amount of the other phase increases with the ZnO content increasing. The addition of ZnO does not induce much degradation in the microwave dielectric properties but lowers the τf value to near zero. Typically, the good microwave dielectric properties of εr = 36.4, Q × = 8835 GHz, τf = 4.4 ppm/°C could be obtained for the 1 wt% B2O3 and 4 wt% ZnO co‐doped sample sintered at 920°C, which is promising for application of the multilayer microwave devices using Ag as internal electrode.  相似文献   

7.
Ultralow‐temperature sinterable alumina‐45SnF2:25SnO:30P2O5 glass (Al2O3‐SSP glass) composite has been developed for microelectronic applications. The 45SnF2:25SnO:30P2O5 glass prepared by melt quenching from 450°C has a low Tg of about 93°C. The SSP glass has εr and tanδ of 20 and 0.007, respectively, at 1 MHz. In the microwave frequency range, it has εr=16 and Qu × f=990 GHz with τf=?290 ppm/°C at 6.2 GHz with coefficient of thermal expansion (CTE) value of 17.8 ppm/°C. A 30 wt.% Al2O3 ‐ 70 wt.% SSP composite was prepared by sintering at different temperatures from 150°C to 400°C. The crystalline phases and dielectric properties vary with sintering temperature. The alumina‐SSP composite sintered at 200°C has εr=5.41 with a tanδ of 0.01 (1 MHz) and at microwave frequencies it has εr=5.20 at 11 GHz with Qu × f=5500 GHz with temperature coefficient of resonant frequency (τf)=?18 ppm/°C. The CTE and room‐temperature thermal conductivity of the composite sintered at 200°C are 8.7 ppm/°C and 0.47 W/m/K, respectively. The new composite has a low sintering temperature and is a possible candidate for ultralow‐temperature cofired ceramics applications.  相似文献   

8.
Srn+1TinO3n+1 (n=1, 2) ceramics with tetragonal Ruddlesden–Popper structure were prepared via a standard solid‐state reaction process, and their microstructures and microwave dielectric properties were investigated systematically. The phase composition, grain morphology, and densification behavior were explored using X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Outstanding microwave dielectric properties were achieved in the present ceramics: εr=42, × f=145 200 GHz, τf=130 ppm/°C for Sr2TiO4, and εr=63, × f=84 000 GHz, τf=293 ppm/°C for Sr3Ti2O7, respectively. The present ceramics might be expected as excellent candidates for next‐generation medium‐permittivity microwave dielectric ceramics after the further optimization of τf value.  相似文献   

9.
The liquid‐phase sintering behavior and microstructural evolution of x wt% LiF aided Li2Mg3SnO6 ceramics (x = 1‐7) were investigated for the purpose to prepare dense phase‐pure ceramic samples. The grain and pore morphology, density variation, and phase structures were especially correlated with the subsequent microwave dielectric properties. The experimental results demonstrate a typical liquid‐phase sintering in LiF–Li2Mg3SnO6 ceramics, in which LiF proves to be an effective sintering aid for the Li2Mg3SnO6 ceramic and obviously reduces its optimum sintering temperature from ~1200°C to ~850°C. The actual sample density and microstructure (grain and pores) strongly depended on both the amount of LiF additive and the sintering temperature. Higher sintering temperature tended to cause the formation of closed pores in Li2Mg3SnO6x wt% LiF ceramics owing to the increase in the migration ability of grain boundary. An obvious transition of fracture modes from transgranular to intergranular ones was observed approximately at x = 4. A single‐phase dense Li2Mg3SnO6 ceramic could be obtained in the temperature range of 875°C‐1100°C, beyond which the secondary phase Li4MgSn2O7 (<850°C) and Mg2SnO4 (>1100°C) appeared. Excellent microwave dielectric properties of Q × f = 230 000‐330 000 GHz, εr = ~10.5 and τf = ~?40 ppm/°C were obtained for Li2Mg3SnO6 ceramics with x = 2‐5 as sintered at ~1150°C. For LTCC applications, a desirable Q × f value of ~133 000 GHz could be achieved in samples with x = 3‐4 as sintered at 875°C.  相似文献   

10.
New high‐quality microwave dielectric ceramics Mg2NdNbO6 were prepared by conventional solid‐state sintering method. The phases, micro‐structures and microwave dielectric properties of Mg2NdNbO6 ceramics were investigated at sintering temperature in the range of 1275°C‐1400°C. The X‐ray diffraction patterns showed that the peaks of the compounds were attributed to two phases, including the main crystalline phase of NdNbO4 that was indexed as the monoclinic phase and MgO as the second phase. Well‐developed microstructures of Mg2NdNbO6 ceramics can be achieved, and the grain size reached the maximum value (1.63 μm) at 1375°C. As the sintering temperature increased, the dielectric constant, temperature coefficient of resonant frequency and apparent density remained almost unchanged, however, the significant change in the quality factor was observed. At 1375°C, Mg2NdNbO6 ceramics possessed excellent microwave dielectric properties: εr = 16.22, Q × f = 116 000 GHz and τf = ?30.96 ppm/°C.  相似文献   

11.
A new ultralow-loss Sr2CeO4 microwave dielectric ceramic was prepared via a conventional solid-state method. The X-ray diffraction and Rietveld refinement results demonstrate that pure-phase Sr2CeO4 ceramics belong to the orthorhombic structure with a Pbam space group. Scanning electron microscopy analysis reveals dense and homogeneous microstructure. Optimum microwave dielectric properties of εr = 14.8, Q × f = 172,600 GHz (9.4 GHz) and τf = -62 ppm/°C were obtained as it was sintered at 1270 °C for 4 h. In addition, the substitution of a few amount of Ti4+ for Ce4+ was found to have significant influences on the grain morphology, sintering behavior, phase structure and microwave dielectric properties. Among them, the Sr2Ce0.65Ti0.35O4 ceramic sintered at 1350 °C for 4 h demonstrates near-zero τf of -1.8 ppm/°C, εr of 20.7 and Q×f of 115,550 GHz (8.1 GHz) because of its two-phase structure, showing large application potentials.  相似文献   

12.
The Ag2Mo2O7 and Ag6Mo10O33 ceramics for ultra‐low temperature co‐fired ceramic application were prepared by the solid‐state reaction route. The optimized densification temperatures of Ag2Mo2O7 and Ag6Mo10O33 are 460°C and 500°C, respectively. The phase structures and microstructures of these ceramics were systematically studied. The Ag2Mo2O7 ceramic sintered at 460°C/4 h exhibits excellent microwave dielectric properties with εr=13.3, Q×f=25 300 GHz and τf=?142 ppm/°C at 9.25 GHz. The Ag6Mo10O33 ceramic sintered at 500°C/4 h shows the microwave dielectric properties with εr=14.0, Q×f=8500 GHz and τf=?50 ppm/°C at 9.00 GHz. Moreover, when Ag2Mo2O7 samples are sintered at ultra‐low sintering temperatures of 420°C‐490°C, the Q×f values of them are all above 20 000 GHz. Besides, the Ag2Mo2O7 ceramic does not react with silver powder or aluminum powder. The variation of relative permittivity, resonant frequency, and Q×f values as a function of operating temperature has been also studied. All the results indicate that the Ag2Mo2O7 ceramic is a good candidate for ultra‐low temperature co‐fired microwave devices.  相似文献   

13.
The Ba2-xCaxMgTi5O13 (0 ≤ x ≤ 0.3) microwave dielectric ceramics were for the first time prepared via a conventional solid-state reaction method. A small amount of Ca2+ can dissolve into the lattice by forming solid solutions with a monoclinic structure (C2/m) and further influence the sintering behavior, grain growth and microwave dielectric properties of Ba2-xCaxMgTi5O13 ceramics. Both increase of εr and decrease of Qxf with x should be associated with increased lattice distortion and uneven grain growth although the sample density and the ratio of the ionic polarizability to the molar volume show little variation. Moreover, the A-site bond valence and τf indicate a close relation in current study, such that the Ca2+substitution can induce an increase of τf values. The optimum microwave dielectric properties of εr ∼ 29.3, Qxf ∼ 30,870 GHz (6.5 GHz), and a near-zero τf ∼ +2.1 ppm/°C can be contained in the x = 0.15 ceramic sintered at 1160 °C.  相似文献   

14.
Novel glass–free low temperature firing microwave dielectric ceramics Li2CeO3 with high Q prepared through a conventional solid‐state reaction method had been investigated. All the specimens in this paper have sintering temperature lower than 750°C. XRD studies revealed single cubic phase. The microwave dielectric properties were correlated with the sintering conditions. At 720°C/4 h, Li2CeO3 ceramics possessed the excellent microwave dielectric properties of εr = 15.8, Q × f = 143 700 (GHz), and τf  = ?123 ppm/°C. Li2CeO3 ceramics could be excellent candidates for glass‐free low‐temperature co‐fired ceramics substrates.  相似文献   

15.
The structure, microwave dielectric properties, and low‐temperature sintering behavior of acceptor/donor codoped Li2TiO3 ceramics [Li2Ti1?x(Al0.5Nb0.5)xO3, x = 0–0.3] were investigated systematically. The x‐ray diffraction confirmed that a single‐phase solid solution remained within 0 < x ≤ 0.2 and secondary phases started to appear as x > 0.2, accompanied by an order–disorder phase transition in the whole range. Scanning electron microscopy observation indicated that the complex substitution of Al3+ and Nb5+ produced a significant effect on the microstructural morphology. Both microcrack healing and grain growth contributed to the obviously enhanced Q×f values. By comparison, the decrease of εr and τf values was ascribed to the ionic polarizability and the cell volume, respectively. Excellent microwave dielectric properties of εr ~ 21.2, Q×f ~ 181 800 GHz and τf  ~ 12.8 ppm/°C were achieved in the x = 0.15 sample when sintered at 1150°C. After 1.5 mol% BaCu(B2O5) additive was introduced, it could be well sintered at 950°C and exhibited good microwave dielectric properties of εr ~ 20.4, Q×f ~ 53 290 GHz and τf ~ 3.6 ppm/°C as well. The cofiring test of the low‐sintering sample with Ag powder proved its good chemical stability during high temperature, which enables it to be a promising middle‐permittivity candidate material for the applications of low‐temperature cofired ceramics.  相似文献   

16.
Bo Li  Jiawei Tian  Lei Qiu 《Ceramics International》2018,44(15):18250-18255
Ca5Zn4-xMgxV6O24 (x?=?0–3) microwave dielectric ceramics with low sintering temperature were synthesized via the conventional solid-state reaction. Effects of the substitution of Mg2+ for Zn2+ on crystal structures and microwave dielectric properties were investigated. XRD and Rietveld refinement showed the solid solution single phase formed when 0?≤?x?≤?2, but a few ZnO was observed when x?=?3. Meanwhile, the lattice parameters were found to decrease monotonously with Mg content increasing. The vibration modes of Raman were confirmed and the relationship with microwave dielectric properties was analyzed. Appropriate substitution of Mg2+ improved the packing fraction, the cation ordering degree, and the Y-site bond valence, contributing to high Q×f and low | τf |. However, the εr reduced with the increasing content of Mg2+ due to the decrease of ion polarizability. Finally, the best microwave dielectric properties were achieved at x?=?2 with εr =?11.0, Q?×?f?=?66,365?GHz (at 10.0?GHz), and τf =??80.4?ppm/°C.  相似文献   

17.
Microwave dielectric ceramic powder of 0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3 (MCT) has been prepared by solid-state reaction method through single-step calcination at 1150 °C. The green bodies prepared from the calcined powder have been sintered by conventional, susceptor-aided, and hybrid microwave sintering techniques followed by annealing. XRD of calcined and sintered ceramics show (Mg,Zn)TiO3 as a major phase with CaTiO3 as a minor secondary phase. Fractographs of fired ceramics obtained by SEM show similar features in conventional and hybrid microwave types of sintering. Microwave dielectric properties such as relative permittivity(εr), temperature coefficient of resonant frequency(τf), and unloaded quality factors (Qu) for conventional sintered at 1325 °C for 4 h are—εr~19.8, τf< –6 ppm/°C and Qu.f 69,600 GHz at 6 GHz. Ceramics obtained through susceptor-aided microwave sintering at 1325 °C for 4 h show poor fired density. But ceramics got by microwave-hybrid sintering (resistive + microwave) at the same temperature show εr~20.6, Qu.f~81,600 GHz at 6 GHz and τf~?6.9 ppm/°C. The effect of hybrid microwave sintering on the dielectric properties of MCT ceramics is found to be more subtle than microstructural.  相似文献   

18.
Bi12GeO20 ceramics sintered at 800°C had dense microstructures, with an average grain size of 1.5 μm, a relative permittivity (εr) of 36.97, temperature coefficient of resonance frequency (τf) of ?32.803 ppm/°C, and quality factor (Q × f) of 3137 GHz. The Bi12‐xGeO20‐1.5x ceramics were well sintered at both 800°C and 825°C, with average grain sizes exceeding 100 μm for x ≤ 1.0. However, the grain size decreased for x > 1.0 because of the Bi4Ge3O12 secondary phase that formed at the grain boundaries. Bi12‐xGeO20‐1.5x (x ≤ 1.0) ceramics showed increased Q × f values of >10 000 GHz, although the εr and τf values were similar to those of Bi12GeO20 ceramics. The increased Q × f value resulted from the increased grain size. In particular, the Bi11.6GeO19.4 ceramic sintered at 825°C for 3 h showed good microwave dielectric properties of εr = 37.81, τf = ?33.839 ppm/°C, and Q × f = 14 455 GHz.  相似文献   

19.
The 10 mol% ZnO–2 mol% B2O3–8 mol% P2O5–80 mol% TeO2 (ZBPT) glass was prepared by quenching as well as slowly cooling the melt. The ZBPT glass prepared by both methods show similar microwave dielectric properties. ZBPT glass has an εr of 22.5 (at 7 GHz), Qu × f of 1500 GHz, and τf of ?100 ppm/°C. The ceramic‐glass composites of Sr2ZnTeO6 (SZT) and ZBPT is prepared through two convenient methods: (a) conventional way of co‐firing the ceramic with ZBPT glass powder and (b) a nonconventional facile route by co‐firing the ceramic with precursor oxide mixture of ZBPT glass at 950°C. In the former route, SZT + 5 wt% ZBPT composite sintered at 950°C showed moderately good microwave dielectric properties (εr = 13.4, Qu × f = 4500 GHz and τf = ?52 ppm/°C). Although the SZT + 5 wt% ZBPT composite prepared through the nonconventional method also showed similar microwave dielectric properties (εr = 13.8, Qu × f = 5300 GHz and τf = ?50 ppm/°C), the synthesis procedure is much simplified in the latter case. The composites are found to be chemically compatible with Ag. The composite containing 5 wt% ZBPT prepared through conventional and nonconventional ways shows linear coefficients of thermal expansion of 7.0 ppm/°C and 7.1 ppm/°C, respectively. Both the composites have a room‐temperature thermal conductivity of 2.1 Wm?1 K?1.  相似文献   

20.
Using a conventional solid‐state reaction Ca5A4(VO4)6 (A2+ = Mg, Zn) ceramics were prepared and their microwave dielectric properties were investigated for the first time. X‐ray diffraction revealed the formation of pure‐phase ceramics with a cubic garnet structure for both samples. Two promising ceramics Ca5Zn4(VO4)6 and Ca5Mg4(VO4)6 sintered at 725°C and 800°C were found to possess good microwave dielectric properties: εr = 11.7 and 9.2, Q × f = 49 400 GHz (at 9.7 GHz) and 53 300 GHz (at 10.6 GHz), and τf = ?83 and ?50 ppm/°C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号