首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ever increasing demand for white light-emitting diodes (W-LEDs) results in the gradual growth of research on functionalized luminescent glasses. In this paper, single-composition tunable white-emitting Eu2+-Tb3+-Eu3+ tri-activated glasses were synthesized by melt quenching method without additional reducing atmosphere. The coexistence of Eu2+ and Eu3+ was confirmed by ultraviolet-visible transmission spectra, photoluminescent spectra, fluorescence decay curves, and X-ray photoelectron spectroscopy. Tb3+ can act as bridge to connect Eu2+-Eu3+ luminescent centers by energy transfer. Tone-tunable white light can be achieved by coupling the emission centered at 412, 541, and 612 nm contributed from Eu2+, Tb3+, and Eu3+, respectively. By adjusting the relative content of Eu2+/Tb3+/Eu3+, ideal chromaticity coordinates of (0.33, 0.33) can be achieved under excitation of ultraviolet light. High thermal stability and tiny chromaticity shift were exhibited in samples. These results suggest that Eu2+-Tb3+-Eu3+ tri-activated glasses have great potential application in ultraviolet-driven W-LEDs.  相似文献   

2.
Quaternary alkaline earth zinc‐phosphate glasses in molar composition (40 ? x)ZnO – 35P2O5 – 20RO – 5TiO2xEu2O3 (where x=1 and R=Mg, Ca, Sr, and Ba) were prepared by melt quenching technique. These glasses were studied with respect to their thermal, structural, and photoluminescent properties. The maximum value of the glass transition temperature (Tg) was observed for BaO network modifier mixed glass and minimum was observed for MgO network modifier glass. All the glasses were found to be amorphous in nature. The FT‐IR suggested the glasses to be in pyrophosphate structure, which matches with the theoretical estimation of O/P atomic ratio and the maximum depolymerization was observed for glass mixed with BaO network modifier. The intense emission peak was observed at 613 nm (5D07F2) under excitation of 392 nm, which matches well with excitation of commercial n‐UV LED chips. The highest emission intensity and quantum efficiency was observed for the glass mixed with BaO network modifier. Based on these results, another set of glass samples was prepared with molar composition (40 ? x)ZnO – 35P2O5 – 20BaO – 5TiO2xEu2O3 (x=3, 5, 7, and 9) to investigate the optimized emission intensity in these glasses. The glasses exhibited crystalline features along with amorphous nature and a drastic variation in asymmetric ratio at higher concentration (7 and 9 mol%) of Eu2O3. The color of emission also shifted from red to reddish orange with increase in the concentration of Eu2O3. These glasses are potential candidates to use as a red photoluminsecent component in the field of solid‐state lighting devices.  相似文献   

3.
In this research, series of Ag nanoclusters (Ag NCs) contained oxyfluoride glasses were prepared using the melt quenching method, in which the REF3 (RE = Y, La, and Gd) were selected as dopants to control their size distribution. The absorption, steady and time‐resolved PL spectra were carried to investigate the size dependent luminescence properties of Ag NCs. The spectral results indicated that the super broadband emission of Ag NCs is contributed by the spin‐allowed (blue side) and the spin‐forbidden (red side) transitions, respectively. Besides, the introduction of REF3 (RE = Y, La, and Gd) can promote the formation of Ag NCs with different sizes and therefore modulated their luminescence properties. The maximum external quantum yields of Ag NCs with emissions at 430, 510, 520, and 570 nm were evaluated to be 24.6%, 40.7%, 56.3% and 30.7%, respectively, which can be obtained in SAg, SAgLa, SAgGd, and SAgY.  相似文献   

4.
Fluorescence intensity ratios (FIRs) of the 640 nm and 602 nm emissions from Sm3+ were recorded at various temperatures T to identify the temperature increases ΔT associated with laser‐induced local heating of Ag nanoparticles. The FIRs increased as intensities of the excitation beam from a 532‐nm continuous‐wave laser increased. Estimated T of the irradiated region increased to as high as 586°C when at laser irradiation of 1.5 W on the surface containing Ag nanoparticles. Local heating due to the surface plasmon resonance of Ag nanoparticles is a main reason for the ΔT that eventually leads to precipitation of PbS quantum dots in glasses.  相似文献   

5.
AgNO3/EuF3/YbF3 tri‐doped oxyfluoride glass was prepared by a melt‐quenching method, in which a high‐efficient broadband spectral modification can be realized due to the simultaneous energy‐transfer processes of Eu3+→Yb3+, molecular‐like Ag (ML‐Ag) clusters→Yb3+, and ML‐Ag clusters→Eu3+→Yb3+. The spectral measurements indicated that besides the F‐center brought by the fluorides, the formation of the ML‐Ag clusters and the evolution of silver species within the glass matrix were also closely related to the introduction of Eu3+ and Yb3+ ions and which in return greatly affected the luminescence properties of these rare‐earth ions. As the UV‐visible irradiation in the wavelength region of 250–600 nm can be efficiently converted into near‐infrared emission around 1000 nm in the AgNO3/EuF3/YbF3 tri‐doped glass, which thus has promising application in enhancing the photovoltaic conversion efficiency of the silicon solar cell.  相似文献   

6.
Near-infrared (NIR) luminescence of Pr3+ and Tm3+ ions in titanate-germanate glasses has been studied for laser and fiber amplifier applications. The effect of the molar ratio GeO2:TiO2 (from 5:1 to 1:5) on spectroscopic properties of glass systems was studied by absorption, luminescence measurements, and theoretical calculations using the Judd–Ofelt theory. It was found that independent of the TiO2 concentration, intense NIR emissions at 1.5 and 1.8 μm were observed for glasses doped with Pr3+ and Tm3+ ions, respectively. Moreover, several spectroscopic and NIR laser parameters for Pr3+ and Tm3+ ions, such as emission bandwidth, stimulated emission cross-section, quantum efficiency, gain bandwidth, and figure of merit, were determined. The results were discussed in detail and compared to the different laser glasses. Systematic investigations indicate that Pr3+-doped system with GeO2:TiO2 = 2:1 and Tm3+-doped glass with GeO2:TiO2 = 1:2 present profit laser parameters and could be successfully applied to NIR lasers and broadband optical amplifiers.  相似文献   

7.
Nd3+‐doped silicate glass (Nd‐glass) was employed as a color filter for a white LED based on red and green phosphor (RG‐LED), to manipulate the photoluminescence spectral shape and thus to provide a wider color gamut. The hypersensitive transition of Nd3+:4I9/24G5/2,2G7/2 was adjusted via glass composition and Nd concentration, and improved absorbance as well as reduced the absorption bandwidth. The effective absorption of the Nd‐glass at ~580 nm reduced the spectral linewidth of the green and red emissions, improving the color reproduction range. The color gamut of the RG‐LED was improved from 75.3% to 81.6% NTSC by the introduction of Nd‐glass as a color filter. Reliability under high operating current and high temperature were also examined and discussed.  相似文献   

8.
Control of light‐induced electron generation is of vital importance for the application of caged phosphors. For Eu‐doped Ca11.94?xSrxAl14O33 caged phosphors, the suppressed effect of strontium doping on the light‐induced electrons is observed compared to the europium‐free Ca11.94?xSrxAl14O33 phosphors. In the presence of europium ions, Sr doping will promote the reduction of Eu3+ to Eu2+. The Rietveld refinement suggests that unit cell volumes of the Ca11.94?xSrxAl14O33:Eu0.06 samples are expanded when Ca2+ ions are replaced by Sr2+ ions. The absorption and FTIR transmittance spectra confirm that the competitive reaction of encaged O2? anions with H2 is suppressed. For the sample (x=0.48), the higher thermal activation energy (~0.40 eV) for luminescence quenching can be attributed to the more rigid framework structure after Sr doping. For Ca11.94?xSrxAl14O33:Eu0.06 phosphors, their emission colours are tuned from red to purple upon 254 nm excitation and from pink to blue under electron beam excitation through Sr substitution. The insight gained from this work may have a significant guiding to design new phosphors for LED and FEDs and novel nanocaged mutifunctional materials.  相似文献   

9.
In order to alleviate the effect of the surface defects on the emission properties of quantum dots, copper ions‐doped ZnSe quantum dots (QDs) in the glasses are prepared using melt‐quenching and subsequent thermal annealing methods. For glasses without copper doping, tunable band‐edge emission from ZnSe QDs is achieved. For glasses with copper doping, efficient energy transfer from ZnSe QDs to copper ions is observed, and efficient broad band emission from copper ions is realized at the expense of the band‐edge emission of ZnSe QDs. Absorption spectra, size‐dependent broad‐band emission spectra and electron spin resonance spectra show the cupric ions are doped into the ZnSe QDs. Results reported here shows that doping of transition‐metal ions into semiconductor QDs in glasses is promising for development of high efficient luminescent glasses.  相似文献   

10.
The influence of Nd2O3 addition on the precipitation kinetics of lead chalcogenide (PbS) quantum dots (QDs) in silicate glasses was investigated. Energy dispersive X‐ray spectroscopy (EDS) indicated that the Nd3+ ions are preferentially located inside the PbS QDs rather than in the glass matrix. Changes in diameter (D) of PbS QDs exhibited smaller time dependencies (i.e., Dt0.270‐0.286) than that predicted by the classical Lifshitz–Slyozov–Wagner (LSW) theory. This is due to the limited concentrations of Pb2+ and S2? ions and the large diffusion distance inside the glass matrix. In addition, extended X‐ray absorption fine structure (EXAFS) results indicated that the formation of PbS QDs was retarded due to the presence of Nd2O3 in the glasses, as the large NdOx polyhedra interrupt the diffusion of Pb2+ and S2? ions. We believe that these Nd3+ ions are primarily located in PbS QDs in the form of Nd–O clusters, and that the PbS QDs are built on top of these clusters.  相似文献   

11.
The thermal effects of Er/Yb‐doped NaYF4 phosphor induced by 980/1510 nm laser diode irradiation were intuitively and contrastively investigated using an infrared thermal imaging technology with real‐time online monitoring. The Yb3+/Er3+ codoped materials have strong thermal effects and high‐temperature elevation under 980 nm irradiation. However, the severe thermal effects of materials with higher Er3+ ion doping concentration are remarkably attributed to the cross relaxation between the Er3+ ions under 980 nm irradiation. The energy transfer between Er3+ and Yb3+ ions in Er3+/Yb3+‐codoped materials also contributes to the thermal effects under 1510 nm laser diode irradiation. Under the same testing conditions, the temperature elevation ?T of samples induced by 1510 nm laser diode irradiation is lower than that induced by 980 nm laser diode irradiation. The temperature rising rate and elevation ?T value of samples depend on the ion doping concentration and power density of the laser diode excitation. The internal temperature of the samples exhibits deep temperature gradient under 980/1510 nm laser diode irradiation. By comparing the two kinds of thermometry methods, the temperature value calculated by fluorescence intensity ratio is almost similar to that obtained through infrared thermal imaging technology under higher excitation power pumping.  相似文献   

12.
In this work, we revealed the possible mechanisms of the photodarkening in Pr3+ ions singly doped and Pr3+/Ce3+ co-doped silicate glasses and fibers induced by X-ray and 488-nm laser radiations and studied the role of Ce3+ in increasing radiation resistance in Pr3+-doped silicate glasses and fibers. The absorption, emission, electron paramagnetic resonance (EPR), radiation induced attenuation spectra, and X-ray photoelectron spectroscopy (XPS) of Pr3+ singly doped and Pr3+/Ce3+ co-doped silicate glasses before and after X-ray radiation were measured and analyzed. The fluorescence intensity and photoinduced attenuation of Pr3+ singly doped and Pr3+/Ce3+ co-doped silicate fibers at visible wavelengths pumped by 488-nm laser were measured and analyzed. The influence of Ce3+ ions co-doping on the spectroscopic properties of Pr3+ ions as well as the radiation-induced defects in silicate glasses was studied. Results demonstrate that both X-ray and 488-nm laser radiations will induce photodamage in Pr3+ ions-doped silicate glasses and fibers. Co-doping Ce3+ (by up to 1 mol%) is efficient to suppress the darkening induced by both X-ray and 488-nm laser radiations without influence on the luminescence behavior of Pr3+ ions in silicate glasses and fibers. Our studies demonstrate the promising potential of Pr3+/Ce3+ co-doped silicate glasses for visible lasing applications.  相似文献   

13.
Combining near infrared (NIR) luminescence and magnetic resonance (MR) contrasts in a crystal host is highly desirable for contrast agents in biomedical imaging technology, as it will enable multimodal imaging processes. In the present work, biocompatible luminescent and paramagnetic fluorapatite (FAp) nanoparticles were prepared via doping with neodymium (Nd3+) and gadolinium (Gd3+), respectively. While Nd3+‐doped FAp (Nd:FAp) exhibits dopant concentration‐dependent photoluminescence (PL) in the NIR spectral region, Gd3+‐doped FAp (Gd:FAp) shows paramagnetic behavior and strong transverse relaxation effects resulting in MR contrastive properties. Remarkably, multimodal co‐doped FAp (Nd:Gd:FAp) nanoparticles combine both properties in 1 single crystal enabling luminescence as well as MR contrast.  相似文献   

14.
A colorless Ce3+‐activated borosilicate scintillating glass enriched with Gd2O3 is successfully synthesized in air atmosphere for the first time. The full replacement of 10 mol% BaO by Al2O3, and the partial substitution of 3 mol% SiO2 by Si3N4 in the designed glass composition are crucial for this success. The role of Al3+ on tuning the optical properties of Ce3+‐activated borosilicate scintillating glass synthesized in air are analyzed by optical transmittance, X‐ray absorption near edge spectroscopy (XANES) spectra, photoluminescence (PL) and radioluminescence (RL) spectra. The results suggest that the stable Ce4+ ions can be effectively reduced to stable Ce3+ ions by the full replacement of BaO by Al2O3, and both the PL andRL intensity of the designed borosilicate scintillating glass are enhanced by a factor of 6.7 and 5.2, respectively. The integral RL intensity of the synthesized Ce3+‐activated borosilicate scintillating glass is ~17.2%BGO, with a light output of about 1180 ph/MeV. The strategy of substituting BaO by Al2O3 will trigger more scientific and technological considerations in designing novel fast scintillating glasses.  相似文献   

15.
Because of superbroad luminescence in the range of near infrared (NIR), Bi‐doped glasses and fibers have received more attentions recently for the applications in super broadband optical fiber amplifiers or new wavelength lasers. As the luminescence comes from the transitions between naked 6p orbitals of bismuth, it is very susceptible to slight changes of local field around Bi. Therefore, it is always very challenging to predict NIR emission of bismuth in advance. Here, we found bismuth NIR emission shows predictable tendency in ternary glass system of MgO–Al2O3–SiO2. The emission peak shifts red along the content of magnesium upon the excitation of 484 nm, which follows a single exponential growth equation. In the meantime, the full width at half maximum (FWHM) is broadened while the lifetime keeps decreasing. Glass structure analysis on basis of FTIR, 27Al NMR, 29Si NMR spectra reveals that these changes correlate to integrity of glass network, the increased disorder of local field around bismuth and the enhanced interaction between bismuth and host, which are perhaps due to the linear increase of nonbridging oxygen, and the enhanced Si–O asymmetric stretching vibrations along with magnesium, respectively. Electron probe microanalysis shows good homogeneity of Si, Al, Mg, Bi, and O distribution within the samples, and yoyo experiments of heating and cooling between 30°C and 300°C reveal the good resistance of such doped glasses to thermal degradation. This makes the glasses promising in applications of fiber devices even under extreme condition such as at higher temperature. The finding in this work should be helpful for the design of Bi‐doped laser glasses in future.  相似文献   

16.
Novel Tb3+-activated borogermanate-tellurite scintillating glasses with a maximum density of 7.15 g/cm3 aimed at detection of high-energy rays were prepared by a melt-quenching method for the first time. The concentration-dependent optical properties including transmittance, photoluminescence, luminescence dynamic behaviors, and X-ray excited luminescence in the as-prepared Tb3+-activated borogermanate-tellurite glasses were studied. The optimal content of Tb2O3 in the superdense borogermanate-tellurite glasses is revealed to be 7 mol% under both 275 nm ultraviolet light and X-ray excitation. The integral scintillation efficiency of Tb3+-activated borogermanate-tellurite scintillating glass is about 33.71% of the standard Bi4Ge3O12 (BGO) scintillating crystal.  相似文献   

17.
A series of novel SrLu2O4: x Ho3+, y Yb3+ phosphors (x=0.005‐0.05, y=0.1‐0.6) were synthesized by a simple solid‐state reaction method. The phase purity, morphology, and upconversion luminescence were measured by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. The doping concentrations and sintering temperature were optimized to be x=0.01, y=0.5 and T=1400°C to obtain the strongest emission intensity. Under 980 nm laser diode excitation, the SrLu2O4:Ho3+, Yb3+ phosphors exhibit intense green upconversion (UC) emission band centered at 541 nm (5F4,5S25I8) and weak red emission peaked at 673 nm (5F55I8). Under different pump‐power excitation, the UC luminescence can be finely tuned from yellow‐green to green light region to some extent. Based on energy level diagram, the energy‐transfer mechanisms are investigated in detail according to the analysis of pump‐power dependence and luminescence decay curves. The energy‐transfer mechanisms for green and red UC emissions can be determined to be two‐photon absorption processes. Compared with commercial NaYF4:Er3+, Yb3+ and common Y2O3:Ho3+, Yb3+ phosphors, the SrLu1.49Ho0.01Yb0.5O4 sample shows good color monochromaticity and relatively high UC luminescence intensity. The results imply that SrLu2O4:Ho3+, Yb3+ can be a good candidate for green UC material in display fields.  相似文献   

18.
Ceramic phosphor plates of cerium (Ce3+)-doped oxyfluoride were fabricated by the solid-state reaction method. These phosphors exhibit efficient emission, with the novel feature of color tuning by varying both the doping concentration and excitation wavelength. As the Ce3+ concentration increases, the excitation spectrum broadens by a factor of 1.6, and the excitation peak wavelength shifts from 390 to 435 nm, and there is a variation in excitation energy of ~ 10%. Luminescence spectrum of low Ce3+ concentration samples is tuned from blue to green with the change of excitation wavelength. The emission peak exhibits a shift of 58 nm into the red spectral region, varying the Ce3+ concentration from 0.05 to 0.1 mol% ; whereas this shift is only 6 nm when Ce3+ content changes from 0.25 to 1 mol%. Photoluminescence (PL) quantum yield has achieved 76%. The crystal structure was examined using X-ray diffraction to explain its possible influence on the redshift luminescence. A proof of concept of white LED was constructed using a 450 nm blue LED chip with an oxyfluoride phosphor plate, showing a luminous efficacy (LE) of 64 lm/W with a color rendering index of 74.  相似文献   

19.
Single‐phase white‐light‐emitting phosphors NaLa9(1?x?y) (GeO4)6O2: xTm3+, yDy3+ (NLGO: xTm3+, yDy3+) have been synthesized by a traditional solid‐state reaction method. The powder X‐ray diffraction (XRD), photoluminescence (PL), PL excitation (PLE) spectra, fluorescence decay curves, chromaticity coordinates, correlated color temperature (CCT), and the cathodoluminescence (CL) properties of the obtained phosphors are measured and discussed in detail. It is discovered that the series samples could be color‐tunable (from blue to yellow) by tuning the doping content of Dy3+ with a fixed Tm3+ content excited at 357 nm and white light (0.341, 0.324) could be obtained with the CCT of 5079 K. A NLGO: 0.01Tm3+, 0.02Dy3+ is studied carefully as representative. The main emissions of Tm3+ (453 nm, 1D23F4) and Dy3+ (478 nm, 4F9/26H15/2; 572 nm, 4F9/26H13/2) make it emit white light with good thermal stability (67% of the initial till 523 K). The energy transfer from Tm3+ to Dy3+ is noticed and further research has been done to explain the enhancement of Dy3+ emission and the excellent thermal stability. It also keeps stable under continuous electron bombardment with high intensity. All of these indicate that it could be a suitable candidate for white‐emitting phosphor applied for near ultraviolet‐white light‐emitting diode (NUV‐WLED) and field‐emission display (FED).  相似文献   

20.
Rare‐earth‐doped oxyfluoride germanate and borate glasses were synthesized and next studied using spectroscopic methods. Influence of fluoride modifier on luminescence properties of rare earths in different glass hosts was examined. The excitation and emission spectra of Pr3+ and Er3+ ions in the studied glasses were registered. The emission spectra of Pr3+ ions in germanate and borate glasses are quite different and depend strongly on the glass host. In samples doped with Er3+ ions emission bands located around 1530 nm corresponding to the main 4I13/24I15/2 laser transition were registered, independently of the glass host. Quite long‐lived near‐infrared luminescence of Er3+ ions was observed for germanate glasses with low BaF2 content, while in borate glass systems influence of barium fluoride on luminescence lifetimes is not so evident. The Judd–Ofelt calculations were used in order to determine quantum efficiencies of excited states of rare‐earth ions in germanate and borate glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号