首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel red phosphor Li0.5Na1.5SiF6:Mn4+ (LNSF:Mn) based on the unequal dual‐alkaline hexafluorosilicate with superior optical performances has been synthesized via ion‐exchange between [MnF6]2? and [SiF6]2? at room temperature. The composition and the crystal structure of the as‐obtained phosphor LNSF:Mn were determined by energy‐dispersive x‐ray spectroscopy (EDS) and x‐ray diffraction (XRD), respectively. The formation mechanism of the red phosphor LNSF:Mn has been discussed in detail. The phosphor LNSF:Mn exhibits good chromaticity properties and a quantum yield (QY) of 96.1%, which are better than the identified fluorosilicate phosphors Na2SiF6:Mn4+ (NSF:Mn) and K2SiF6:Mn4+ (KSF:Mn). A broad and intense absorption in the blue and a bright emission in red‐shifted wavelengths make the phosphor LNSF:Mn a desired candidate for applications in warm white light‐emitting diodes.  相似文献   

2.
In this article, we propose a facile method for synthesis of K2SiF6:Mn4+ phosphor and discuss its promising application in warm‐white light emitting diodes (LED). The K2SiF6:Mn4+ was synthesized from SiO2 powders through redox reaction in HF/KMnO4 solution. The optical properties of LEDs containing different ratios of K2SiF6:Mn4+ phosphor and commercial Ce3+‐doped garnets (YAG‐40) yellow–green phosphor were studied. A warm‐white LED, with color temperature of 3510 K and color rendering index of 90.9 and efficacy of 81.56 lm/W was demonstrated.  相似文献   

3.
Mn4+-activated deep red-emitting SrLaLiTeO6 phosphors are investigated for indoor plant growth LED applications for the first time. The phosphors crystallize in monoclinic (P21/n) symmetry is isostructural with SrLaLiTeO6 host. B-site substitution of Mn4+ ions is confirmed from the redshift of high energy phonon modes in both Raman and IR spectra. The phosphor exhibited a far-red emission centered at 696 nm corresponding to the 2Eg → 4A2g spin-forbidden transition of the Mn4+ ions. Approximate crystal field parameters depict the weak influence of neighboring ligand fields on Mn4+ ions and the least covalence of Mn4+-ligand bonding compared to other double perovskite phosphors. Moreover, the phosphors exhibit excellent thermal stability with an activation energy of 0.23 eV. Phosphor parameters including CCT, color purity, and quantum yield are evaluated and their values meet the requirements of a red-emitting phosphor for LED applications. Furthermore, the PL emission spectrum of SrLaLiTeO6: Mn4+ matches with the absorption spectrum of plant phytochromes denoting the prospects of this phosphor for indoor plant growth LED applications.  相似文献   

4.
《Ceramics International》2020,46(7):8811-8818
K2SiF6:Mn4+ phosphor is well known for its excellent red emission performance which is vital for improving the color rendering of white light-emitting diodes. However, the poor moisture resistance limits its application in optical devices. In this paper, K2SiF6:Mn4+ phosphor is coated with an inorganic hydrophobic protective layer to obtain good moisture resistance. Chemical vapor deposition method was used to decompose acetylene at high temperature, and the generated nanoscale carbon layer worked as a hydrophobic protective coating on the surface of the phosphor. Microstructure, compositions and properties of the synthesized K2SiF6:Mn4+@C phosphor were investigated in detail. It is found that most of the deposited carbon is coated on the surface of phosphor crystals in amorphous state. The carbon atoms are bonded with the fluorine element in K2SiF6:Mn4+ phosphor, forming carbon-fluorine (C–F) covalent bonds. The moisture resistance of K2SiF6:Mn4+@C phosphor is improved owing to the protection of the hydrophobic carbon. The relative emission intensity of K2SiF6:Mn4+@C phosphor could maintain 73% of the initial luminous intensity after immersing in the aqueous solution at room temperature for 8 h, whereas K2SiF6:Mn4+ phosphor without carbon coating was only 0.7% remaining of the initial value under the same conditions.  相似文献   

5.
The cation exchange method has been demonstrated to be efficient in doping Mn4+ ions into various fluorides to synthesize the red-emitting LED phosphors. This paper, however, reports the challenge in using this method to dope Mn4+ into the Na2SiF6 single crystals, to prepare the fluoride phosphor in single-crystal form, a state-of-the-art study in the white LED lighting field. The millimeter-sized Na2SiF6 single crystals with a uniform columnar morphology (2–3 mm in length) were successfully grown in solution by a slow cooling process after optimizing the precursors. Then, the crystals were soaked in the HF solution dissolved with K2MnF6 to implement Mn4+-doping via the cation exchange process. Evaluation of the Mn4+-doping behavior reveals that the Mn4+ ↔ Si4+ cation exchange is less efficient in the case of single crystal host compared with the polycrystalline powdery ones and by-reactions also occur which generates new phases. The Na2SiF6 single crystals doped with Mn4+ exhibit a series of discrete sharp peaks with intense zero phonon line emission at 617 nm under 450 nm blue irradiation. This study may trigger the exploration of new single crystal fluoride phosphor.  相似文献   

6.
Eu2+ and Eu2+/Mn2+‐activated Na5Ca2Al(PO4)4 phosphors have been synthesized by the combustion method. X‐ray powder diffraction profiles, luminescence spectra, chromaticity variation, and energy transfer of Na5Ca2Al(PO4)4:Eu2+, Mn2+ were investigated as a function of the Eu2+ and Mn2+ concentrations in Na5Ca2Al(PO4)4. The Na5Ca2Al(PO4)4:Eu2+,Mn2+ phosphors can be effectively excited at wavelength ranging from 300 to 430 nm, which matches well with that for near‐ultraviolet (UV) light‐emitting diode (LED) chips. Under excitation at 354 nm, Na5Ca2Al(PO4)4:Eu2+,Mn2+ not only exhibits blue‐green emission band attributed to 4f65d1→4f7 of Eu2+ but also gives an orange emission band attributed to 4T16A1 of Mn2+. The emission color of the phosphor can be systematically tuned from blue‐green through white and eventually to orange by adjusting the relative content of Eu2+ and Mn2+ through the principle of energy transfer. The results indicated that Na5Ca2Al(PO4)4:Eu2+, Mn2+ may serve as a potential color‐tunable phosphor for near UV white‐light LED.  相似文献   

7.
《Ceramics International》2023,49(16):27024-27029
Mn4+-activated fluoride is one of the most important red phosphors for white light-emitting diodes (WLEDs) with high color rendering index (CRI). Due to a lack of water resistance, their potential applications are limited. Although surface coating strategies improve the waterproof stability of fluoride red phosphors, they have downsides. It was found that Nb5+ plays an important role in improving the water resistance of Mn4+-activated oxyfluorides by preventing the hydrolysis of [MnF6]2-. In this work, the influence of Nb5+ on the waterproof stability of Mn4+-activated fluorides was explored. A set of synthesized K2Ta1-xNbxF7:Mn4+ phosphors exhibit tunable and superior water resistance. The photoluminescence (PL) intensity of the representative sample K2Ta0.6Nb0.4F7:5%Mn4+ remains nearly 100% of its initial value even after being immersed in water for 60 min, which is significantly higher than the commercial K2SiF6:Mn4+ red phosphor (8.7%). Our findings open up new possibilities for the development of waterproof fluoride red phosphors.  相似文献   

8.
A novel deep-red-emitting phosphor Ca2ScNbO6:Mn4+ is prepared via a high-temperature solid-state reaction and its luminescent properties are systematically investigated. The results show that Mn4+-activated Ca2ScNbO6 phosphors have broad absorption in ultraviolet region, and show bright deep-red emission at 692 nm. The optimal doping concentration, crystal-field strength, internal quantum efficiency, and mechanism of concentration and thermal quenching effects are discussed in detail. Moreover, NaF flux is screened out to improve both luminescent intensity and morphology of the phosphor. Finally, a red light-emitting diode (LED) lamp is fabricated with as-prepared Ca2ScNbO6:Mn4+ phosphors and a 365 nm LED chip. The electroluminescence spectra show a good overlapping with phytochrome PR and PFR absorbance. The results provided the as-synthesized Ca2ScNbO6:Mn4+ phosphors a great potential in plant growth lighting.  相似文献   

9.
A double perovskite-type substrate of La2MgGeO6 (LMGO) was successfully synthesized via a high-temperature solid-state reaction method and was codoped with Mn4+ and Dy3+ to form a new deep-red phosphor (LMGO:Mn4+,Dy3+) for artificial plant growth light-emitting diodes (LEDs). This extraordinary phosphor can exhibit strong far-red emission with a maximum peak at 708 nm between 650 and 750 nm, which can be ascribed to the 2E→ 2A2 g spin-forbidden transition of Mn4+. The X-ray diffraction (XRD) patterns and high-resolution transmission electron microscopy (HRTEM) clarified that the La3+ sites in the host were partly replaced by Dy3+ ions. Moreover, we discovered energy transfers from Dy3+ to Mn4+ by directly observing the significant overlap of the excitation spectrum of Mn4+ and the emission spectrum of Dy3+ as well as the systematic relative decline and growth of the emission bands of Dy3+ and Mn4+, respectively. With the increase in the activator (Mn4+) concentration, the relationship between the luminescence decay time and the energy transfer efficiency of the sensitizer (Dy3+) was studied in detail. Finally, an LED device was fabricated using a 460 nm blue chip, and the as-obtained far-red emitting LMGO:Mn4+,Dy3+ phosphors for Wedelia chinensis cultivation. As expected, the as-fabricated plant growth LED-treated Wedelia chinensis cultured in the artificial climate box with overhead LEDs demonstrated that after 28 days of irradiation, the average plant growth rate and the total chlorophyll content were better than those of specimens cultured using the commercial R-B LED lamps, indicating that the as-prepared phosphor could have a potential application in the agricultural industry.  相似文献   

10.
《Ceramics International》2023,49(8):12088-12096
Mn4+ activated fluoride red phosphors, as candidate red materials in white light-emitting diodes (WLEDs), have received widespread attention. However, the poor water stability limits their application. Herein, a novel dodec-fluoride red phosphor Na3Li3In2F12:Mn4+ with good waterproof stability was successfully synthesized by solvothermal method. The crystal structure, optical property, micro-morphology, element composition, waterproof property and thermal behavior of Na3Li3In2F12:Mn4+ phosphor were analyzed. Under the 468 nm blue light excitation, the Na3Li3In2F12:Mn4+ phosphor has narrow emission bands in the area of 590–680 nm. Compared with commercial red phosphor K2SiF6:Mn4+, the Na3Li3In2F12:Mn4+ phosphor possesses better waterproof stability. When soaked in water for 360 min, the PL intensity of the Na3Li3In2F12:Mn4+ phosphor remains at initial 80%. Finally, warm WLEDs with CRI of 87 and CCT of 3386 K have been fabricated using blue InGaN chip, YAG:Ce3+ yellow phosphor and Na3Li3In2F12:Mn4+ red phosphor.  相似文献   

11.
K2TiF6:Mn4+ is an attractive narrow-band red-emitting phosphor for warm white light-emitting diodes (LEDs). Nevertheless, the hexafluoride phosphor is liable to deliquesce in moist environments, which leads to a sharp deterioration performance of luminescence. Surface modification of K2TiF6:Mn4+ phosphor with SrF2 coating has been introduced, with the aid of KHF2 transition layer to moderate the lattice mismatch. The reaction mechanism is discussed in detail, as so as the influence of SrF2 coating on the luminescence intensity. The SrF2 coating is able to prevent the hydrolysis of internal [MnF6]2− group; thereby, the luminescence intensity retains over 90% of initial value after being immersed in distilled water for 2 h. The LED devices fabricated with commercial Y3Al5O12:Ce3+ and as-modified K2TiF6:Mn4+ phosphors exhibit bright white light with tunable chromaticity coordinate, correlated color temperature, and color rendering index. It enlightens a convenient method to enhance the moisture resistance of Mn4+ doped fluoride phosphors for commercial application in the field of white LEDs.  相似文献   

12.
A series of novel green emission Whitlockite‐type Ca8ZnLa(PO4)7:Eu2+ and color tunable Ca8ZnLa(PO4)7:Eu2+,Mn2+ phosphors were prepared by the solid‐state reaction method in a reducing atmosphere. Its crystal structure and phase composition were identified by high‐resolution transmission electron microscopy, selected area electronic diffraction, X‐ray photoelectron spectroscopy, and X‐ray powder diffraction Rietveld refinement, and it was found to be trigonal, belonging to R‐3c(161) space group. The luminescence properties of Eu2+ singly doped and Eu2+/Mn2+ codoped Ca8ZnLa(PO4)7 phosphors were revealed in detail. Ca8ZnLa(PO4)7:Eu2+ is excitable over a broad range from 200 to 450 nm with a prominent green emitting. With varied Eu2+/Mn2+ ratios, fine‐tune emission under 365 nm excitation can be achieved from green (0.221, 0.468) to magenta (0.391, 0.276), especially the warm white light (0.392, 0.352), and CCT 3500 K can be obtained by the process of energy transfer between Eu2+ and Mn2+. The ET mechanism in this system is managed via the dipole‐dipole interaction with the maximum energy‐transfer efficiency 82.8% based on the decay lifetime data. These results suggest that as‐prepared phosphors can serve as promising candidates of UV‐pumped w‐LEDs.  相似文献   

13.
《Ceramics International》2021,47(23):33152-33161
The Mn4+-doped Ca2MgTeO6 (CMTO) far-red emitting phosphors with double perovskite-type structure were successfully synthesized. Upon near-ultraviolet (n-UV, 300 nm) light excitation, the as-prepared phosphors showed far-red light at 700 nm attributed to the 2Eg4A2g transition of Mn4+ ion. The doping concentration of the CMTO:xMn4+ samples was optimized to be 0.8 mol%. The relevant mechanism of concentration quenching was demonstrated as the dipole-dipole interaction. Furthermore, solid solution and impurity doping strategies were adopted to improve the far-red emission of the luminescence-ignorable CMTO:Mn4+ phosphor. Series of Ca2MgTe(1−y)WyO6:0.8 mol%Mn4+ (y = 0–100 mol%) solid solution and Ca2−zLnzMgTe0.6W0.4O6:Mn4+ (Ln = La, Y, and Gd, z = 10 mol%) phosphors were synthesized through the above two strategies. The luminescence intensity of the optimal Ca1.9Gd0.1MgTe0.6W0.4O6:Mn4+ phosphor was 13.7 times that of the CMTO:Mn4+ phosphor and 2.51 times that of red commercial phosphor K2SiF6:Mn4+. Notably, both CMTO:Mn4+ and Ca1.9Gd0.1MgTe0.6W0.4O6:Mn4+ phosphors exhibited remarkable thermal stability compared with most Mn4+-doped phosphors. Finally, the highly efficient Ca1.9Gd0.1MgTe0.6W0.4O6:Mn4+ phosphor was successfully applied in fabricating the warm white light diode (w-LED). This working along both lines strategy exhibited great potential for luminescence optimization of Mn4+-doped oxide phosphors.  相似文献   

14.
Uniform orange‐to‐red spherical phosphors of Sr2P2O7:Ce3+, Mn2+ have been synthesized by the co‐precipitation method and characterized by X‐ray powder diffraction, scanning electron microscopy, and photoluminescence spectroscopy. The results indicate that the morphology, size, and photoluminescence properties of Sr2P2O7:Ce3+, Mn2+ phosphors can be effectively controlled by the reaction and the sintering temperatures. Energy transfer from Ce3+ to Mn2+ in Sr2P2O7 phosphor was observed from photoluminescence spectra of Sr2P2O7:Ce3+, Sr2P2O7:Mn2+, and Sr2P2O7:Ce3+, Mn2+. Moreover, based on a self‐assembly process, a possible formation mechanism for the spherical phosphors is proposed. The uniform phosphor spheres obtained in this work exhibit great potential for high‐resolution display devices such as light emitting diodes.  相似文献   

15.
Herein, a series of Eu2+&Mn2+substituted fluorophosphates Ca6Gd2Na2(PO4)6F2 phosphor with apatite structure have been synthesized and investigated by the powder X‐ray diffraction, photoluminescence spectra, fluorescence decay curves, thermal quenching, and chromaticity properties. Particularly, both Eu2+ and Mn2+ emissions at the two different lattice sites 4f and 6h in Ca6Gd2Na2(PO4)6F2 matrix have been identified and discussed. The dual energy transfer of Eu2+→Mn2+ and Gd3+→Mn2+ in Ca6Gd2Na2(PO4)6F2:Eu2+,Mn2+ samples have been validated and confirmed by the photoluminescence spectra. The dependence of color‐tunable on the activator concentration of Mn2+ was investigated to realize white light emission. By varying the doping concentration of the Mn2+ ion, a series of tunable colors including pure white light and candle light are obtained under the excitation of 350 nm. Moreover, the fluorescence decay curves have been fitted and analyzed using the Inokuti–Hirayama theoretical model to estimate the Eu–Mn interaction mechanism. We also investigated temperature‐dependent photoluminescence quenching characteristics according to the Arrhenius equation. Preliminary studies on the properties of the phosphor indicated that the obtained phosphors might have potential application as a single‐component white‐emitting phosphor for UV‐based white LEDs.  相似文献   

16.
It has been one of the hot issues to prepare the red-emitting Mn4+-doped fluoride phosphors with highly efficient and waterproofness for warm white-light-emitting diodes (WLEDs) by the green and environmentally friendly method. Herein, we design a novel green molten salt route to synthesize K2SiF6:Mn4+ red powder using molten NH4HF2 salt instead of HF liquor as the reaction medium. The results show that KMnO4 and MnF2 could produce Mn4+ in NH4HF2 molten salt through a reduction reaction, and the resulting Mn4+-doped K2SiF6 exhibited a bright red emission peaked at 632 nm under blue light excitation. The luminescence intensity of the as-obtained product after immersing into water for 24 hours maintain nearly 100% of that before soaking and emission peak shape remains unchanged. The thermal stability of the sample was evaluated by temperature-dependent luminescence spectral intensity during heating and cooling. Furthermore, a warm white-light-emitting diodes (WLEDs) with an excellent color rendering index (Ra = 87.1), lower correlated color temperature (CCT = 3536K), and high luminous efficacy (116.99 lm·W−1) was fabricated based on blue chip and K2SiF6:Mn4+ and commercial yellow phosphor (Y3Al5O12:Ce3+).  相似文献   

17.
《Ceramics International》2022,48(12):17253-17260
Mn4+-doped fluoride phosphors can solve the problem for lack of red emitting component in commercial white light-emitting diodes (WLEDs). However, its application is seriously hindered by its easy hydrolysis. Here, we propose to use sodium sulfite as a passivator to treat K2SiF6:Mn4+. After passivation, a Mn4+-rare K2SiF6 protective layer can be formed in situ on the surface of the phosphor, and lead to improved emission intensity, luminescent thermal stability and moisture resistance. When soaking in water for 6 h, the integrated fluorescent intensity of the passivated sample maintained 90.8% of the initial value, while the intensity of the un-passivated sample sharply decreased to 10.2% of the initial value. Mechanisms to improve the emission, water resistance and thermal stability of the luminescence are proposed and discussed. WLED was assembled with the passivated sample, and good performance of warm white light (CCT = 2963 K, Ra = 90.4) was obtained.  相似文献   

18.
Latent fingerprints provide crucial affirmations of identity in forensic science. However, they are microscopic. In this study, novel fluorescence materials, Ba2LaSbO6:Mn4+ (BLSO:Mn4+) phosphors, were developed by a sol–gel method for the fluorescence imaging of latent fingerprints. The structural properties of the phosphors were investigated by powder X-ray diffraction (XRD) and its Rietveld refinement analyses, and transmission electron microscopy and scanning electron microscopy techniques. The photoluminescence properties of the BLSO:Mn4+ phosphors were evaluated comprehensively by recording the emission, excitation, and decay curves. The BLSO:Mn4+ phosphors provide a high-intensity red emission at 677 nm under 350 nm excitation caused by the 2Eg4A2g transition of Mn4+. The optimum concentration of Mn4+ in the BLSO host was determined to be ~0.2 mol%. The calculated Commission International de L'Eclairage (CIE) chromaticity coordinates (0.716, 0.283) of the emission from the BLSO:Mn4+ phosphor are located in the pure red region of the CIE 1931 diagram. The red-emitting BLSO:0.2Mn4+ phosphor was used as a fluorescence imaging powder for visualizing latent fingerprints on various substrates with high resolution, high contrast, and high efficiency, as well as good selectivity.  相似文献   

19.
《Ceramics International》2022,48(11):15695-15702
The exploration of efficient and high-purity red phosphors is an urgent need in LED development. Due to the compact and compositional-tunable structure of whitlockite compound, manganese-based Ca19Mn2(PO4)14 is chosen as phosphor host for Eu2+ sensitization. Rietveld refinement, steady-state spectra, decay lifetime analysis and temperature-dependent emission spectra were investigated and clearly discussed. Under 360 nm excitation, Ca19Mn2(PO4)14: Eu2+ shows a strong Mn2+ sensitized emission at 655 nm with FWHM of 82 nm, benefiting from the short-distance-induced high-efficient Eu2 -Mn2+ energy transfer. Emission engineering of Ca19Mn2(PO4)14: Eu2+ is achieved by Sr2+ co-doping, leading to both tunable peak wavelength (ranging from 650 to 610 nm) and improved intensity (130% of original value). Moreover, Ca19Mn2(PO4)14: Eu2+ exhibits a promising thermal stability where only 40% of emission intensity is lost at 200 °C. Finally, we explored the working performance of the fabricated RGB phosphor-converted white LED. The present work indicates that Ca19Mn2(PO4)14: Eu2+ phosphor is of great potential as a promising and efficient red phosphor in phosphor-converted white LED.  相似文献   

20.
For phosphor‐converted warm white light‐emitting diodes (WLEDs), it is essential to find highly efficient red oxide phosphors, which are better chemically stable and benign to environment and can be prepared in a much milder condition. Here, we report a red phosphor LiNaGe4O9:Mn4+ with a quantum yield up to 78% after systematic optimization in synthesis temperature, dopant concentration of Mn4+, and sintering time. Best performance of the phosphor can be reached when it is synthesized in a mild reaction condition, that is, at 850°C for 3 h in air. The integrated emission intensity is more than four times stronger than commercial red phosphor 3.5MgO·0.5MgF2·GeO2:Mn4+ (MFG:Mn4+) under a blue light excitation at 470 nm. Crystal structural analysis reveals that the high efficiency Mn4+ exhibits in the compound is mainly due to the well separation of GeO6 groups from each other by GeO4 tetrahedra in the neighborhood and the ideal substitution of octahedral Ge4+ site by Mn4+ in view of both size and charge matches. The high performance of the phosphor encourages us to apply the blue absorbing red phosphor to WLED, which is based on combination of a blue LED chip and YAG:Ce3+, and the warm perception WLED is therefore achieved with a color temperature of 3353 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号