首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early hydration of portland cement with crystalline mineral additions   总被引:1,自引:0,他引:1  
This research presents the effects of finely divided crystalline mineral additions (quartz and limestone), commonly known as filler, on the early hydration of portland cements with very different mineralogical composition. The used techniques to study the early hydration of blended cements were conduction calorimeter, hydraulicity (Fratini's test), non-evaporable water and X-ray diffraction. Results showed that the stimulation and the dilution effects increase when the percentage of crystalline mineral additions used is increased. Depending on the replacement proportion, the mineralogical cement composition and the type of crystalline addition, at 2 days, the prevalence of the dilution effect or the stimulation effect shows that crystalline mineral additions could act as sites of heat dissipation or heat stimulation, respectively.  相似文献   

2.
It is one of important measures for the sustainable development of cement industry to utilize industrial wastes. High-strength composite portland cement with a large amount of granulated blast furnace slag (GBFS), fly ash and limestone was prepared by separate grinding method, optimizing gypsum and using activators. The total amounts of blending materials are between 45% and 65% and the strength grades of cements reach 525 or even 625 according to Chinese national standard for composite portland cement. Besides setting time and strength, the hydration heat, drying shrinkage and sulfate resistance were also determined.  相似文献   

3.
Models for early age E-modulus evolution of cement pastes are available in the literature, but their validation is limited. This paper provides correlated measurements of early age evolution of E-modulus and hydration of pastes from five commercial cements differing in limestone content. A recently developed methodology allowed continuous monitoring of E-modulus from the time of casting. The methodology is a variant of classic resonant frequency methods, which are based on determination of the first resonant frequency of a composite beam containing the material. The hydration kinetics — and thus the rate of formation of solids — was determined using chemical shrinkage measurements. For the cements studied similar relationships between E-modulus and chemical shrinkage were observed for comparable water-to-binder ratio. For commercial cements it is suggested to model the E-modulus evolution based on the amount of binder reacted, instead of the degree of hydration.  相似文献   

4.
The effect of a melamine sulfonate resin, a naphthalene sulfonate resin and a sulfonated lignin on the rheological properties and the hydration of portland cement and tricalcium silicate pastes was studied. In addition to improving the flow properties of the pastes all three substances retarded the hydration of C3S and altered the stoichiometric composition of the CSH-phase formed. The rate of ettringite formation was altered by the agents differently in two different cements studied.  相似文献   

5.
The pore structure ofβ-C2S, C3S, and portland cement pastes was investigated using mercury porosimetry and H2O and N2 adsorption. The β-C2S had more total macro- and mesoporosities than C3S and portland cement pastes of a similar degree of hydration. C3S and portland cement pastes had similar total porosities but differed in the porosity size distribution. In the mesopore range, the various test methods gave different results. These differences are discussed on the basis of the various models proposed for cement paste. It is shown that shrinkage could be correlated with the volume of pores <0.03 μm, but not with total porosity.  相似文献   

6.
The degree of hydration, the expansion during hydration, and the total porosity of low-porosity portland cement pastes were investigated at hydration times ranging from 1 hour to 180 days. The effects of the type of cement (Type I and II), the grinding aid, the surface of the cement, the water-cement ratio (0.2 and 0.3), and the temperature of hydration (5°, 25° and 50°C) were determined.  相似文献   

7.
Chemical shrinkage of normal Portland cement pastes (0.4 ≤ w/c < 0.8) has been measured at 20°C and of pastes with w/c = 0.5 furthermore at 35, and 50°C by means of measuring the volume change of samples of cement paste during the hydration. A small increase in the chemical shrinkage at “infinite time” was found at increasing water-cement ratio. The influence of the temperature was found to be twofold: Increasing temperature caused an increasing rate of the development of chemical shrinkage and a decrease of the chemical shrinkage at “infinite time”.Earlier studies of chemical shrinkage of Portland cement paste are also reported.  相似文献   

8.
The early hydration characteristics of slag cements (blends of separately ground granulated blast furnace slags with portland cement) have been examined. Isothermal calorimetry, chemical shrinkage and compressive strength measurements were made. The kinetics of hydration have been treated; apparent activation energies determined for a slag cement were ~49 KJ/mole compared with ~44 KJ/mole for the portland cement used in the blends.  相似文献   

9.
Calcium sulfoaluminate (CSA) cements have lower carbon footprint than that of portland cement, which makes them a suitable alternative as a sustainable cementitious binder. Early‐age expansion of CSA cements can be exploited to induce compressive stress in restrained concrete which can later counteract tensile stress developed during drying shrinkage, thus enhancing the resistance against shrinkage cracking. However, a proper understanding of the expansion behavior is critical to eliminate any risk related to expansion‐induced cracking. This study examines the expansion and hydration characteristics of various ordinary portland cement (OPC)‐CSA blends. Early‐age expansion of paste samples was monitored. The increase in CSA cement content increased the extent of expansion. Samples having the highest CSA content (30% by mass) exhibited excessive expansion which led to their cracking. Quantitative X‐ray diffraction, pore solution extraction, porosity, tensile strength, and dynamic modulus tests were performed to monitor the physico‐chemical changes in OPC‐CSA blends. It was shown that the ettringite supersaturation in the investigated systems gave rise to the crystallization stress, responsible for the expansion. Thermodynamic models enabled a reasonable prediction of tensile failure, particularly in the blends with the higher CSA content.  相似文献   

10.
The Mössbauer spectroscopic and x-ray diffraction investigations have been carried out on a variety of ordinary portland, portland pozzolanic, portland slag and sulphate resisting portland cements, using dry as well as hydrated samples. The discussion of the Mössbauer parameters shows that Fe atoms occupying distorted octahedral and tetrahedral sites in the dry cements are hydrated to form ferrite monosulphate without producing Fe(OH)3 and its gel; hydration of the slag cement proceeds much faster than other cements; and that the composition of the iron-bearing phase in the sulphate resisting portland cement, studied in detail, is close to C4AF.  相似文献   

11.
In this study, the effects of 35, 45, and 55 wt.% natural pozzolan addition on the properties of blended cement pastes and mortars were investigated. Blended cements with 450 m2/kg Blaine fineness were produced from a Turkish volcanic tuff in a laboratory mill by intergrinding portland cement clinker, natural pozzolan, and gypsum. The cements were tested for particle size distribution, setting time, heat of hydration, compressive strength, alkali-silica activity, and sulfate resistance. Cement pastes were tested by TGA for Ca(OH)2 content and by XRD for the crystalline hydration products. The compressive strength of the mortars made with blended cements containing large amounts of natural pozzolan was lower than that of the portland cement at all tested ages up to 91 days. Blended cements containing large amounts of pozzolan exhibited much less expansion with respect to portland cement in accelerated alkali-silica test and in a 36-week sulfate immersion test.  相似文献   

12.
高掺量混合材复合水泥的水化性能   总被引:9,自引:0,他引:9  
李北星  胡晓曼  陈娟  何真 《硅酸盐学报》2004,32(10):1304-1309
通过水化微量热、化学结合水测定和X射线衍射、热重-差热分析、扫描电镜等测试方法研究了3种高掺量矿渣、粉煤灰、石灰石复合水泥的水化性能,并与硅酸盐水泥的水化进行了对比。结果表明:高掺混合材复合水泥的水化放热特征与硅酸盐水泥有明显不同,早期水化反应速度低于硅酸盐水泥,但后期由于矿渣、粉煤灰的二次水化反应使其水化速度增长较快。主要的水化产物亦为水化硅酸钙凝胶、钙钒石和Ca(OH)2晶体,但Ca(OH)2含量明显低于硅酸盐水泥浆体中的Ca(OH)2含量。  相似文献   

13.
14.
The connectivity of the capillary porosity in cement-based materials impacts fluid-and-ion transport and thus material durability, the interpretation of experimental measurements such as chemical shrinkage, and the timing and duration of curing operations. While several methods have been used to assess the connectivity of the capillary pores, the interpretation of some experimental procedures can be complicated by the addition of certain chemical admixtures. This paper assesses capillary porosity depercolation in cement pastes using measurements of chemical shrinkage, low temperature calorimetry (LTC), and electrical impedance spectroscopy. The experimental results are analyzed to identify the time of capillary porosity depercolation. In addition, the factors that influence the interpretation of each technique are discussed. Experimental evidence suggests that capillary porosity depercolation, as defined by Powers, occurs after hydration has reduced the capillary porosity to around 20% in cement paste systems. The influence of capillary porosity depercolation on the transport properties is demonstrated in terms of a reduction in the electrical conductivity of the cementitious material. Special attention is paid to understand and interpret the influence of shrinkage-reducing admixtures (SRAs) on the freezing behavior of cementitious systems, particularly in regard to the inapplicability of using LTC to detect porosity depercolation in cement pastes containing such organic admixtures.  相似文献   

15.
A new mathematical form of a cement model is introduced for the prediction of concrete strengths obtained at various curing temperatures from the properties of the cement used. This model considers the hydrations of C3S and C2S as first order reactions in which the C3A acts as catalyst. Not only does this model reproduce the strengths of various portland cements, but also it provides quantitative information about several important characteristics of the kinetics of hydration as a function of curing temperature. These characteristics are: the time of beginning of the hardening; rates of hardening; the time when the diffusion control of hydration starts; how much this strength is; and, the final strength potential of various portland cements.It is shown that the new model is well supported by experimentally obtained strength results.  相似文献   

16.
张世华 《硅酸盐通报》2018,37(1):210-214
采用石灰石粉对低品位粉煤灰进行煅烧改性,利用X射线衍射、扫描电镜和能谱分析等方法对改性粉煤灰的矿物组成和化学组成进行表征.同时测定了掺改性粉煤灰的水泥浆体的抗压强度和自收缩,并采用背散射扫描电镜和压汞测孔仪研究了掺改性粉煤灰水泥浆体的微观结构.结果表明,粉煤灰经煅烧改性生成了水硬性矿物β-C2S,水化可生成CSH凝胶,改善了等外粉煤灰颗粒与水泥基体的界面粘接,降低了复合水泥浆体的孔隙率和自收缩,提高了复合水泥浆体的强度.  相似文献   

17.
The potential of calcium aluminosilicate (CAS) glasses as supplementary cementitious materials is studied in terms of the development of compressive strength for mortars containing a mixture of portland cement, CAS glass, and limestone. In addition, the impact of internal and external alkali activation of the cementitious systems on the mortar performances is investigated. Internal alkali activation is obtained by adding alkali oxides to the CAS glass system, whereas external alkali activation is realized by hydration of the blended cements containing alkali‐free CAS glasses using alkaline solutions. For the internally alkali‐activated systems and the alkali‐free mortars, higher strengths are achieved in comparison to the reference mortar prepared from plain ordinary portland cement. In contrast, the externally alkali‐activated mortars exhibit lower compressive strengths, implying the importance of both the immediate availability of alkali ions in the cementitious system and the increased dissolution rate of the glass particles caused by the network depolymerization. The glasses are also studied by thermal analysis and the results are used to calculate the theoretical CO2 emissions. The lowest embodied CO2 emission is estimated for the blends containing alkali‐activated CAS glasses.  相似文献   

18.
In order to study the way in which Santorin earth (pozzolan) acts during its hydration with portland cements and specifically, the rates of its action and its optimum content, the amount of Ca(OH)2 derived during the hydration has been quantitatively determined, by means of thermogravimetry. Thus, cement pastes have been prepared with mixtures of portland cement containing proportions of Santorin earth up to 40% of various finenesses. These pastes were cured in water up to three years.  相似文献   

19.
A hydration kinetics model for Portland cement is formulated based on thermodynamics of multiphase porous media. The mechanism of cement hydration is discussed based on literature review. The model is then developed considering the effects of chemical composition and fineness of cement, water-cement ratio, curing temperature and applied pressure. The ultimate degree of hydration of Portland cement is also analyzed and a corresponding formula is established. The model is calibrated against the experimental data for eight different Portland cements. Simple relations between the model parameters and cement composition are obtained and used to predict hydration kinetics. The model is used to reproduce experimental results on hydration kinetics, adiabatic temperature rise, and chemical shrinkage of different cement pastes. The comparisons between the model reproductions and the different experimental results demonstrate the applicability of the proposed model, especially for cement hydration at elevated temperature and high pressure.  相似文献   

20.
The hydration of low-porosity portland cement pastes may be divided into three stages. The first stage starts with a fast hydration until 10 to 15% of the cement is hydrated (pre-dormant period), which is followed by a very slow hydration, caused by the formation of a coating on the cement grains (dormant period). After 15 to 20% of the cement is hydrated, the coating is ruptured, and a fast reaction starts, which lasts until about 30% of the cement is hydrated. This is the second stage of the reaction. In the third stage, the hydration slows down, due to retardation by the accumulating hydration products. The mechanism of the third stage is treated quantitatively. The diffusion through the very narrow pores between the hydration products is activated diffusion, and the apparent energy of activation of the diffusion is calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号