首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoceria was synthesized by treating cerium carbonate hydrate in a molten KOH-NaOH mixture at 200 °C. The nanoceria thus synthesized under a hydrogen atmosphere had a crystal size of 21.6 nm measured by XRD, consistent with the particle size of 23 nm measured by TEM. Raman spectra results indicated that the nanoceria produced under hydrogen had a downshift of 0.9 cm?1 from the sample synthesized in air. XPS spectra showed that the Ce3+ fraction of the nanoceria synthesized in hydrogen was greater than that produced in air. The oxygen vacancies were formed by partial oxidization of the precursor in molten KOH-NaOH mixture. The UV–visible absorption properties of ceria synthesized under hydrogen showed a 34 nm red-shift compared with that synthesized in air. The nanoceria prepared in this work had a better catalytic property for CO oxidization than the commercial nanoceria. Results indicated that the increased Ce3+ fraction or oxygen vacancies formed by this partial oxidization process extended the absorption edge of ceria resulting in a narrower band gap, and enhanced the catalytic activity of nanoceria. This method has proven to provide a simple and scalable method for the synthesis of high quality nanoceria.  相似文献   

2.
Pyroprocessing technology is one of the most promising technologies for an advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. In pyroprocessing technology, the development of high-temperature transport technologies for molten salt is a crucial prerequisite and a key issue in the industrialization of pyro-reprocessing. However, there have been a few transport studies on high-temperature molten salt. Three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated, a suction pump transport method was selected for molten salt transport owing to its flexibility. An apparatus for suction transport experiments was designed and installed for the development of high temperature molten salt transport technology. About 2 kg of LiCl–KCl eutectic salt was prepared by mixing 99.0%, LiCl and KCl and drying in a convection dry oven at 200 °C for 1 h. Predissolution tests of the prepared LiCl–KCl eutectic salt using the melting reactor of the experimental apparatus was carried out to investigate the dissolution behavior of the prepared LiCl–KCl eutectic salt. From the results of the pre-dissolution test, it was found that prepared LiCl–KCl eutectic salt was well dissolved at 500 °C. High temperature molten salt transport experiments by suction are currently being performed using the prepared LiC–KCl eutectic salt. The preliminary experimental results of lab-scale molten salt transport showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 m torr–10 torr at 500 °C.  相似文献   

3.
《Ceramics International》2022,48(17):24471-24475
Al2O3–SiC composite powder (ASCP) was successfully synthesized using a novel molten-salt-assisted aluminum/carbothermal reduction (MS-ACTR) method with silica fume, aluminum powder, and carbon black as raw materials; NaCl–KCl was used as the molten salt medium. The effects of the synthesis temperature and salt-reactant ratio on the phase composition and microstructure were investigated. The results showed that the Al2O3–SiC content increased with an increase in molten salt temperature, and the salt–reactant ratio in the range of 1.5:1–2.5:1 had an impact on the fabrication of ASCP. The optimum condition for synthesizing ASCP from NaCl–KCl molten salt consisted of maintaining the temperature at 1573 K for 4 h. The chemical reaction thermodynamics and growth mechanism indicate that the molten salt plays an important role in the formation of SiC whiskers by following the vapor-solid growth mode in the MS-ACTR treatment. This study demonstrates that the addition of molten salt as a reaction medium is a promising approach for synthesizing high-melting-point composite powders at low temperatures.  相似文献   

4.
MgAl2O4 (MA) spinel powder was synthesized by heating an equimolar composition of MgO and Al2O3 in LiCl, KCl, or NaCl. The synthesis temperature can be decreased from >1300°C (required by the conventional solid–solid reaction process) to ∼1100°C in LiCl, or to ∼1150°C in KCl or NaCl. The molten salt synthesized MA powder was pseudomorphic and retained, to a large extent, the size and morphology of the original Al2O3 raw material, indicating that a "template formation mechanism" plays an important role in the synthesis process.  相似文献   

5.
Nano-crystalline Gadolinium Titanate (Gd2Ti2O7) powder was successfully synthesized by “Single Step Molten Salt Technique”. LiCl–KCl eutectic mixture was used as a molten medium for the reaction. The duration of the synthesis was 10 h. Stoichiometric proportion of the reactants were mixed in an (LiCl–KCl) eutectic medium and treated at 750 °C in an electrical resistance furnace. Single phase Gadolinium Titanate compound was obtained by the thermal process. The synthesized powders were characterized using XRD, FT-IR, UV, EDAX and XPS analyses. The morphology of the powder was examined using SEM and TEM techniques. From the above studies, it has been concluded that pure crystalline Gadolinium Titanate powders can be synthesized via low temperature molten salt process.  相似文献   

6.
The synthesis of TiB2 nanopowders arouses considerable interests due to its importance for implementing the extensive applications of TiB2 ceramic. Herein, the high‐purity ultrafine TiB2 nanopowders were successfully synthesized via a molten salt assisted borothermal reduction technique at a relatively low temperature of 1173 K using TiO2 and B powders as precursors within a KCl/NaCl salt. The results showed that the as‐obtained TiB2 nanopowders possessed a polycrystallinity structure, and their specific surface area and equivalent average particle size were 33.18 m2/g and 40 nm, respectively. This study provides a new low temperature synthesis technique of TiB2 nanopowders.  相似文献   

7.
Corrosion studies were performed on uncoated high density graphite and plasma sprayed partially stabilized zirconia (PSZ) coated high density graphite with NiCrAlY bond coat in molten LiCl–KCl eutectic salt at 600 °C for periods of 250 h, 1000 h and 2000 h under inert argon atmosphere. High density graphite showed weight loss while PSZ coated high density graphite showed weight gain. There is no significant attack and degradation of top PSZ coating in molten salt, however microcracks were observed at the bond coat-substrate interface after 2000 h of exposure. PSZ coated high density graphite exhibited excellent corrosion resistance in molten LiCl–KCl salt due to chemical stability and absence of phase transformation as confirmed from scanning electron microscopy, X-ray diffraction and laser Raman studies, however adhesion of the coating has to be improved.  相似文献   

8.
Phase pure titanium diboride (TiB2) powder of 100‐200 nm was synthesized from TiO2 and B2O3 using a molten‐salt‐assisted magnesiothermic reduction technique. The effects of salt type, Mg amount, reaction temperature, and TiO2 raw materials on the synthesis process were examined and the relevant reaction mechanisms discussed. Among the three chloride salts (NaCl, KCl, and MgCl2), MgCl2 showed the best accelerating‐effect. To synthesize phase pure TiB2, 20 mol% excessive Mg had to be used to compensate for the evaporation loss of Mg. Particle shape and size of raw material TiO2 showed little effect on the formation of TiB2 and its shape and size, suggesting that relatively cheaper and coarser TiO2 raw materials could be used for low‐temperature synthesis of TiB2 fine particles. The “dissolution‐precipitation” mechanism governed the overall molten salt synthesis process.  相似文献   

9.
We report here a molten salt (MS) process for the synthesis of nanoporous carbon structures and carbon sheets. Using glucose as the model carbon precursor, the process yields different porous carbon structures with specific surface area up to near 2000 m2/g in molten LiCl/KCl containing different dissolved oxysalts KNmOx, where Nm are nonmetal elements of H, B, C, N, P, S, and Cl. These oxysalts dissolved in LiCl/KCl exert a dominating influence on the pore formation as well as two-dimensional growth of the carbons in MS. Based on the energetics of the redox reaction between carbon and the above oxysalts, a general mechanistic explanation for the pore formation and the activation process in MS is presented. The process reported here not only provides an easy route to convert biomass molecules to carbon-based functional nanomaterials, but also opens up a new direction towards carbonization and two-dimensional growth in high temperature ionic solvent systems.  相似文献   

10.
The electrochemistry of unbuffered and buffered neutral AlCl3-EMIC-MC1 (EMIC =1-ethyl-3-methylimidazolium chloride and MC1= LiCl, NaCl or KCl) room-temperature molten salts was studied at graphitic and nongraphitic electrodes. In the case of the unbuffered 1 : 1 AlCl3 : EMIC molten salt, the organic cation reductive intercalation at about –1.6 V and the AlCl4 anion oxidative intercalation at about +1.8 V were evaluated at porous graphite electrodes. It was determined that the instability of the organic cation in the graphite lattice limits the performance of a dual intercalating molten electrolyte (DIME) cell based on this electrolyte. In buffered neutral 1.1 :1.0:0.1 AIC13: EMIC : MCl (MC1= LiCl, NaCl and KCl) molten salts, the organic cation was intercalated into porous and nonporous graphite electrodes with similar cycling efficiencies as the unbuffered 1 : 1 melt; however, additional nonintercalating processes were also found to occur between 1 and –1.6 V in the LiCl and NaCl systems. A black electrodeposit, formed at –1.4 V in the LiCl buffered neutral melt, was analysed with X-ray photoelectron spectroscopy and X-ray diffraction and was found to be composed of LiCl, metallic phases containing lithium and aluminium, and an alumina phase formed from reaction with the atmosphere. A similar film appears to form in the NaCl buffered neutral melt, but at a much slower rate. These films are believed to form by reduction of the AlCl4 anion, a process promoted by decreasing the ionic radius of the alkali metal cation in the molten salt. The partially insulating films may limit the usefulness of the LiCl and NaCl buffered neutral melts as electrolytes for rechargeable graphite intercalation anodes and may interfere with other electrochemical processes occurring negative of –1 V.  相似文献   

11.
《Electrochimica acta》1985,30(6):799-804
This paper first presents thermodynamic considerations for the concentration dependence of the thermoelectric power in a molten salt system, and then presents experimental data for the Cu/Cu+ and Ag/Ag+ couples in a LiCl—KCl eutectic melt. The experimental data show good agreement with the derived thermodynamic equation.For the thermodynamic treatment, the approach of Førland and Ratkje was chosen, since it is thermodynamically rigorous.  相似文献   

12.
利用氯化钾作熔盐,采用熔盐方法利用高温煅烧制备了Bi3NbTiO9陶瓷粉体,研究了煅烧温度,保温时间和粉体合成之间的关系。结果表明:氧化钾能够有效降低Bi3NbTiO9粉体的合成温度和提高粉体的合成速率。熔盐方法获得纯Bi3NbTiO9相的温度要比固相方法降低约150℃。和保温温度相比较,保温时间对晶粒尺寸的影响有限。  相似文献   

13.
Hydrothermal Synthesis of Cerium(IV) Oxide   总被引:2,自引:0,他引:2  
CeO2 powders have been prepared from cerium(III) nitrate, cerium(IV) sulfate, and cerium(IV) ammonium sulfate under hydrothermal conditions at 120° to 200°C for 5 to 40 h. The effects of the starting cerium compounds, hydrothermal treatment temperature, and the concentration of the solutions on the crystal growth of CeO2 were investigated. CeO2 powders hydrothermally synthesized at 180°C for 5 h from cerium(IV) salts had very fine particle sizes (30 Å); on the other hand, the powder from the cerium(III) salt had a relatively coarse particle size (160 Å). Although the crystallite size of the powder synthesized from the cerium(IV) compounds depended on the treatment temperature, that from the cerium(III) compound was insensitive to the treatment temperature. The mechanisms for the growth of CeO2 particles under hydrothermal conditions are discussed.  相似文献   

14.
Stability of a boron-doped diamond as an oxygen evolution electrode material was evaluated at 773 K in molten LiCl–KCl (58.5:41.5 mol%), LiCl–KCl (75:25 mol%), LiCl–CaCl2 (64:36 mol%), LiCl–NaCl–CaCl2 (52.3:13.5:34.2 mol%). In molten LiCl–KCl systems, the BDD is stable at 773 K regardless of the concentration of oxide ion and the composition of the melt. In molten LiCl–CaCl2 and LiCl–NaCl–CaCl2, the BDD electrode is less stable than in molten LiCl–KCl systems.  相似文献   

15.
Na0.5Bi0.5TiO3 (NBT) platelets with high aspect ratio were synthesized from Na0.5Bi4.5Ti4O15 (NBIT) precursors via a topochemical microcrystal conversion in molten salt conditions. The effect of the synthesis parameters, such as the molten salt system, synthesis temperature, and the molar ratio of Na2CO3 and NBIT, was investigated. The results showed that NaCl–KCl molten salt environment and excess Na2CO3 played a positive role in the synthesis, square‐shaped NBT was obtained at 950°C in NaCl–KCl molten salt and a TiO2‐free environment, and it was a suitable template candidate to achieve NBT‐based textured ceramics using the reactive template grain growth (RTGG) method.  相似文献   

16.
《Ceramics International》2020,46(17):26492-26501
In this research, well-crystallized lithium chloride (LiCl) intercalated graphite carbonitride (g-C3N4) nanotubes (LiCl–CN) as ceramic films have been rationally designed and fabricated through the molten salt preparation. The as-synthetic material exhibited nanotube morphology and showed significantly enhanced photocatalytic performance on the degradation of bisphenol A (BPA) compared with g-C3N4 in the presence of simulated solar light. The catalytic performance of LiCl–CN was remarkably improved due to the structural alteration of g-C3N4. The results demonstrated 100% BPA could be effectively removed with 0.3 g/L LiCl–CN at pH 5.0 in this investigated reactive system, and the degradation behavior was consistent with pseudo first order reaction kinetic model. Besides, LiCl–CN photocatalyst exhibited excellent photostability and recyclability for BPA photolysis. Mechanistic study revealed that both superoxide radicals (·O2-) and photogenerated holes (h+) were the dominant activated species for the degradation of BPA by LiCl–CN. The findings of this work further open an avenue for the application of g-C3N4 based ceramics materials for organic pollutant removal from wastewater.  相似文献   

17.
《Ceramics International》2020,46(11):18725-18733
In this research, an attempt was made to artificially synthesis bulk nanocrystalline TiC using molten salt bath medium. To do so, titanium powder and carbon black (CB) were mixed as precursors with prepared KCl–LiCl eutectic composition and the effect of the synthesis temperature and dwelling time were studied on the final powder. The X-ray diffraction (XRD) patterns revealed that the increase of the temperature and dwelling time has a considerable effect on the purity and crystallinity of the final TiC. Based on results attained from simultaneous thermal analysis (STA) and microscopic micrographs (TEM and SEM), the mechanism of TiC synthesis was determined as “template growth”. The XRD and STA analyses results showed that by increasing the temperature up to 950 °C, some intermediate phases such as LiTiO2 and TiClx (x = 2 and 3) were formed. The results of Rietveld refinement showed that with increasing the temperature from 815 to 950 °C, the crystallite size of the final product decreased from 75 to 30 nm and the lattice parameter of TiC powder increased from 4.298 to 4.324 Å (The lattice parameter of TiC is 4.327 Å). The Energy Dispersive X-ray Spectroscopy (EDS) declared that the nanocrystalline TiC synthesized at 950 °C was with maximum accordance with the composition of the stoichiometric compound.  相似文献   

18.
A method for the preparation of tantalum carbide (TaC) coatings on tantalum by electrochemical reduction in carbonate ions in molten LiCl‐KCl was developed. Carbide coatings were obtained on the tantalum substrate at 900°C with a bias voltage of ?1.8 V versus the graphite counter electrode. The phase composition, morphology and strength of the carbide coating were characterized by XRD, SEM, and XPS analyses, as well as scratch testing. Kinetic mechanism for the formation of TaC coatings and evolution of chemical bonds between the carbide layer and substrate were schematically discussed. The coatings consist of a single phase of TaC with a thickness of approximately 5 μm. Ta2O5 and tantalate derivatives in molten salt restrict TaC formation. Electro‐deoxidation of Ta substrate can favorably eliminate tantalum‐involved compounds to produce TaC. TaC coatings improve the surface strength of Ta substrate obviously. The formation of a metal‐carbon solid solution in molten salt determines the existence of excess carbon on Ta substrate. Chemical bonds on the TaC coating were investigated in comparison with those at the interface of the metal‐oxygen‐carbon and carbon film.  相似文献   

19.
High-purity superfine (HfxZr1-x)B2 solid-solution powders with various chemical compositions (x = 0.2, 0.5, and 0.8) were successfully synthesized via molten salt synthesis technique at 1423 K using ZrO2, HfO2, and 20% excessive B as precursors within a KCl/NaCl molten salt for the first time. The results showed that the as-synthesized solid-solution powders exhibited the irregular polyhedral morphology with the average particle sizes of 170–185 nm and simultaneously possessed a single-crystalline hexagonal structure and good compositional uniformity from nanoscale to microscale. In addition, their formation mechanisms were well interpreted by analyzing the thermodynamics of the possible chemical reactions in the molten salt.  相似文献   

20.
对熔盐电解法制备硼粉的方法进行了论述,比较了各熔盐体系的优点和缺点,得出了氯化钾或氯化钾和氟化钾混合物的熔盐体系最适宜。用冷却曲线法对KF-KCl-KBF4体系熔盐体系的初晶温度进行了研究,研究表明:KF-KCl-KBF4体系的初晶温度为1 023—1 033 K,即750—760℃之间,当电解温度高于初晶温度20—30℃时,电解效率最高。这就为熔盐电解法制备元素硼提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号