首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical coating, an effective doping modification method, was employed to fabricate fine‐grain BaTiO3‐based ceramics. Based on the consideration of subsequently using base metal as inner electrodes in multilayer ceramic devices, green bodies are generally sintered in reducing atmosphere, which generates more charged point defects and thus affects the electric properties. According to the elements distribution analysis, Al element is greatly enriched in the grain boundary and shell region. Coating Al2O3 achieves not only a smaller grain size and narrower distribution but also a higher breakdown strength, discharge energy density and energy efficiency at ambient temperature. In addition, temperature dependences of dielectric and energy storage properties under a same field were also investigated. Over the whole measuring temperature range, the sample with Al2O3 remains higher discharge energy density and energy efficiency.  相似文献   

2.
A series of dense barium titanate (BaTiO3, BTO) ceramics with different grain sizes (GS) were prepared by two-step sintering method. The effect of GS on piezoelectric coefficient (d33) and planar electromechanical coupling factor (kp) displayed a trend similar to that on relative permittivity (ɛ′). The values of d33, kp, and ɛ′ increased significantly with decreasing GS, reaching maximum values (ɛ = 6079, d33 = 519 pC/N and kp = 39.5%) at approximately 1 μm, and then decreased rapidly with further decreasing GS. The results revealed that high-performance BTO ceramics could be effectively prepared by controlling GS. Polarization–electric field hysteresis loops and temperature dependence of ɛ′ were also investigated.  相似文献   

3.
The ultra-thin multilayer ceramic capacitors (MLCCs) with layer thickness less than 1 μm or even 0.5 μm are in urgent demand due to the rapid development of modern electronic industries. Notably, the dielectric and ferroelectric properties of nanograined BaTiO3-based ceramics, which are widely used as dielectric materials in MLCCs, are highly related to grain size. In this work, nanograined BaTiO3-based ceramics with various grain sizes (50-100 nm) were prepared via the chemical coating method. The grain size effect on the dielectric and energy storage properties were systematically investigated. TEM and EDS images demonstrate that the typical core-shell structure is obtained inside ceramic grains even if the grain size is reduced to 50 nm. The fine-grain ceramic displays a lower maximal polarization but a higher breakdown strength, which ascribes to its weaker ferroelectric contribution and higher grain boundary ratio, respectively. As a result, it is confirmed that there exists an optimal grain size around 70 nm where maximum discharge energy density is achieved under the synergy effect of breakdown strength and polarization, which is also verified by a finite element analysis based on a modified hyperbolic tangent model. All these features provide important guidance towards the design of ultra-thin layer MLCCs by optimizing the dielectric properties and energy storage performance while pursuing miniaturization.  相似文献   

4.
Often, addition of BiMO3 to BaTiO3 (BT) leads to improvement in resistivity with a simultaneous shift to n‐type conduction from p‐type for BT. In considering one specific BiMO3 composition, that is, Bi(Zn1/2Ti1/2)O3 (BZT), several prospective candidates for the origin of this n‐type behavior in BT‐BZT were studied—loss of volatile cations, oxygen vacancies, bismuth present in multiple valence states and precipitation of secondary phases. Combined x‐ray and neutron diffraction, prompt gamma neutron activation analysis and electron energy loss spectroscopy suggested much higher oxygen vacancy concentration in BT‐BZT ceramics (>4%) as compared to BT alone. X‐ray photoelectron spectroscopy and x‐ray absorption spectroscopy did not suggest the presence of bismuth in multiple valence states. At the same time, using transmission electron microscopy, some minor secondary phases were observed, whose compositions were such that they could result in effective donor doping in BT‐BZT ceramics. Using experimentally determined thermodynamic parameters for BT and slopes of Kröger‐Vink plots, it has been suggested that an ionic compensation mechanism is prevalent in these ceramics instead of electronic compensation. These ionic defects have an effect of shifting the conductivity minimum in the Kröger‐Vink plots to higher oxygen partial pressure values in BT‐BZT ceramics as compared to BT, resulting in a significantly higher resistivity values in air atmosphere and n‐type behavior. This provides an important tool to tailor transport properties and defects in BT‐BiMO3 ceramics, to make them better suited for dielectric or other applications.  相似文献   

5.
With the fast charge-discharge speed and ultrahigh power density, electrostatic energy storage materials offer great potential in the applications for pulsed power systems. As a very important member of structural ceramics, 3Y-TZP (3 mol% Y2O3 doped tetragonal zirconia polycrystals) has shown extraordinary mechanical properties. However, the research on their energy storage performance is still lacking. Herein, a ferroelectric phase, BaTiO3 (BT), was introduced and demonstrated to improve the dielectric properties and energy storage performance of 3Y-TZP ceramic matrix via the conventional solid-state reaction method. With increasing the BT content from 0 to 15 mol%, the permittivity of the composite ceramics could be effectively increased from 40.2 to 64.1 measured at 1 kHz. Simultaneously, the dielectric loss could be effectively decreased by depressing the response of charged defects, which was further interpreted by the thermally stimulated depolarization current technique. Meanwhile, the breakdown strength showed a typical increase-then-decrease trend with increasing BT content, and reached their maximum values when doped with 7 mol% BT. Together with the enhancement of dielectric properties, the 7 mol% BT-doped 3Y-TZP ceramics exhibited a maximum energy storage density of 0.42 J/cm3, which was approximately 150% larger than that of the pure 3Y-TZP ceramics.  相似文献   

6.
BaTiO3-based ceramics with various grain sizes (136–529 nm) are prepared through a chemical coating method followed by sintering in a reducing atmosphere. Effects of grain size and temperature on electric properties, energy-storage properties, and dielectric tunability are studied via Current-Field (J-E) curves, ferroelectric hysteresis loops, Capacitance-Voltage (C–V) curves and Thermally stimulated depolarization currents (TSDC). At all temperatures, fine-grain ceramics yield a lower energy density but a higher energy efficiency under the same electric field, owing to a lower ferroelectric contribution. Meanwhile, fine-grain ceramics exhibit a higher maximum energy density due to their higher breakdown strength. Fine-grain ceramics with the grain size of 136 nm have the maximum energy density of 0.41 J/cm3 under the breakdown strength of 75 kV/cm, the corresponding efficiency is 81%. C–V curves show that fine-grain ceramics have better bias-field stability. According to TSDC results, fine-grain ceramics exhibit fewer oxygen vacancies and a higher relaxation activation energy.  相似文献   

7.
Ferroelectric phase coexistence was constructed in (1?x)BaTiO3xCaSnO3 lead‐free ceramics, and its relationship with the piezoelectricity of the materials was investigated to ascertain potential factors for strong piezoelectric response. It is found that the addition of CaSnO3 caused a series of phase transitions in the (1?x)BaTiO3xCaSnO3 ceramics, and a ferroelectric coexistence of rhombohedral, orthorhombic, and tetragonal phases is formed at = 0.08, where the ceramics exhibit the lowest energy barrier and consequently facilitate the polarization rotation and extension, resulting in the optimal piezoelectricity of d33 and kp values of 550 pC/N and 0.60, respectively. Our study provides an intuitive insight to understand the origin of high piezoelectricity in the ceramics with the coexistence of multiferroelectric phases.  相似文献   

8.
New lead‐free piezoelectric ceramics of 0.9BaTiO3–(0.1?x)(Bi0.5Na0.5)TiO3xBiMO3, M=Al and Ga, where x=0.00‐0.10, were fabricated by the solid‐state reaction technique. The effect of BiMO3 contents on the perovskite structure, phase transition, and dielectric, ferroelectric, and piezoelectric properties was investigated. X‐ray diffraction patterns showed that the ceramics exhibit a monophasic perovskite phase up to x=0.06, suggesting stabilized perovskite structures with B‐site aliovalent substitutions. Compositional‐dependent phase transitions were observed from tetragonal to pseudo‐cubic phase with increasing BiMO3 amounts. Al3+ ions were found to stabilize the transition temperature of the ceramics, while significantly decreasing transition temperature, and a change in the dielectric peak were found with an increasing amount of Ga3+. Regarding Al3+ substitution, the remanent polarization (Pr) values were found to decrease slightly with the Al3+ amount. With regard to Ga3+ substitution, Pr values decreased with the Ga3+ amount up to 0.06 and then increased slightly. The ceramics became softer with a higher degree of substitution according to the lower coercive field (Ec), when compared with 0.9BaTiO3–0.1(Bi0.5Na0.5)TiO3 ceramics. Ceramics with a lower degree of substitution and tetragonal phase showed butterfly strain loops that correlated with normal ferroelectric behavior.  相似文献   

9.
In this study, a group of submicro BaTiO3 ceramics ranging from 330 nm to 1.05 μm was successfully prepared by a two-step sintering process and the dependence of electric and mechanical properties on grain size was investigated. By dynamic mechanical analysis (DMA), phase transitions and grain size effects on modulus and internal friction were clearly detected. A clear low-frequency relaxation behavior induced by Debye relaxation was characterized in orthorhombic phase for fine BT ceramics. Furthermore, Arrhenius relationship was applied to theoretically analyze the relaxation peak, for which 90° domain wall motion was considered to be responsible. Another anomaly peak around 70 °C became more obvious after annealing in oxygen atmosphere, which was caused by the surface charge release, the interaction between domain walls and stress, and size effect.  相似文献   

10.
Dielectric materials with high power and energy densities are desirable for potential applications in advanced pulsed capacitors. Computational material designs based on first‐principles calculations provide a “bottom‐up” method to design novel materials. Here, we present a first‐principles effective Hamiltonian simulation of perovskite ferroelectrics, Ba1‐xSrxTiO3, for energy storage applications. The effects of different chemical compositions, temperatures, and external electric fields on the ferroelectric hysteresis and energy storage density of Ba1‐xSrxTiO3 were investigated. The Curie temperature was tuned from 400 to 100 K by doping Sr in the BaTiO3 lattice. At a constant temperature, the ferroelectric hysteresis became slimmer as the Sr content increased, and the energy storage efficiency increased. For the same chemical composition, the energy storage density increased as the temperature increased. For the composition x = 0.4, a discharged energy density of ~2.8 J/cm3 with a 95% efficiency was obtained in an external electric field of 350 kV/cm, and a discharged energy density of 30 J/cm3 with a 92% efficiency was obtained in an external electric field of 2750 kV/cm. The energy storage property predictions and new material designs have potential to create experimental and industrial products with higher energy storage densities.  相似文献   

11.
Fine-grained BaTiO3-based ceramics of different grain sizes (118–462 nm) with core–shell structures were prepared by a chemical coating method, having good dielectric properties and gentle temperature stability. The grain size effect on the dielectric properties and insulation resistivity of modified fine-grained BaTiO3 ceramics under high temperatures and electric fields were investigated. The DC bias shows a strong effect on the dielectric properties with decreasing grain size. In the finest ceramics, the absolute value of the capacitance stability factor was the smallest, indicating that the modified-BaTiO3 ceramic capacitor with smaller grains had higher reliability under the DC bias voltage. The highly accelerated lifetime test results showed that with decreasing the grain size, samples exhibited higher insulation resistance under elevated temperatures and high voltages. Impedance analysis proved that the finer-grained ceramic with core–shell structure had higher activation energy for both grain and grain boundary, whereas the proportion of ionic conductivity was lower.  相似文献   

12.
The effect of porosity on the electrical properties of BaTiO3‐based Multilayer Ceramic Capacitors (MLCCs) is studied. A dense ceramic prepared via powder from a solid‐state processing route is compared against a ceramic that contains intra‐granular pores from powder prepared via hydrothermal processing. Finite element models are created to contain intra‐granular pores, solved and analyzed to show an increase in the electric field and current density surrounding the pores. For single‐pore and two intra‐pore arrangements, the electric field is enhanced by a factor of ~1.5 and 2.5, respectively, when compared to a fully dense (pore‐free) material. For ceramics with equivalent density, the number of pores dramatically alters the electrical response. For a system containing 100 pores, the electric field can increase at least fourfold, therefore facilitating a possible starting route for electrical breakdown of the grain. These results are compared to the Gerson‐Marshall model, typically used in the literature for the calculation of the breakdown strength due to porosity. The results highlight the need to include the effect of adjacent pore interactions. Although studied here for BaTiO3‐based MLCC's the results are applicable to other devices based on ceramics containing porosity.  相似文献   

13.
The electrocaloric effect (ECE) is a promising candidate to replace the vapor-compression cooling technology, which has reached its end of improving the energy utilization efficiency. In the present work, the Y-modified BaTiO3 ceramics with nominal compositions of Ba(Ti1-xYx)O3 (abbreviated as BT-100xY, where x = 0.0125, 0.025, 0.0375, 0.050 and 0.0625) have been prepared through the conventional solid-state reaction sintering method. The dielectric properties and electrocaloric effect of BT-100xY ceramics have been investigated in detail. The XRD patterns indicate that all the BT-100xY ceramics possess pure perovskite structure without secondary phases. The temperature dependence of dielectric permittivity reveals that the BT-1.25Y, 2.5Y, 3.75Y and 5.0Y are normal ferroelectrics, and the BT-6.25Y is a relaxor ferroelectric. The ECE is calculated through the indirect equation based on Maxwell relation. The BT-2.5Y exhibits the largest ΔT = 1.26 K and the largest ΔS = 1.68 J/kg · K among all the BT-100xY ceramics, and the BT-2.5Y also exhibits the largest ΔT/ΔE = 0.296 × 10?6 K · m/V and the largest ΔS/ΔE = 0.394 × 10?6 J · m/kg · K?V. The ECE in our work is comparable with or even larger than that of BaTiO3-based ceramics previously reported, which indicates that the BT-100xY ceramics are promising ECE materials.  相似文献   

14.
《Ceramics International》2022,48(12):17359-17368
In this work, 0.7BaTiO3-0.3Sr0.2Bi0.7TiO3 (0.7BT-0.3SBT) ceramics with 0.15 mol% various rare-earth oxides doped are designed and synthesized by the conventional solid-state route. All prepared samples exhibited a single perovskite phase and dense microstructure with fine grain size (0.2–0.5 μm) after sintering at 1180 °C. Especially, the Gd-doped 0.7BT-0.3SBT ceramics exhibited excellent energy storage performances; the corresponding recoverable energy density and efficiency were 3.2 J/cm3 and 91.5% under an electric field of 330 kV/cm, respectively. Meanwhile, doping with Gd caused the BT-based ceramics to possess excellent temperature (30–150 °C) and outstanding frequency stabilities (10–1000 Hz). Moreover, the pulsed charge-discharge experiments revealed that a high power density of 59 MW/cm3 and a fast discharge speed of 110 ns with outstanding temperature stability could be synchronously obtained in the Gd-doped composition. All these features are attractive for pulsed power applications.  相似文献   

15.
Three group samples were used to investigate the effects of particle size and dispersion methods of In2O3‐SnO2 mixed powders on the sintering properties of ITO ceramics by BET, SEM, XRD, and EPMA, etc. High‐density (99.8% of TD) ITO ceramics, with dimensions of 350 × 250 × 8 mm3 for the industrial application, were obtained by the mixed powders of In2O3 calcined at 1000°C and SnO2 with BET 6.0 ± 0.5 m2/g and collocation use of ball mill for 300 minutes, stirred mill for 60 minutes, and sand mill for 3 minutes. The results indicate that: (i) the larger the SnO2/In2O3 particle size ratio, the higher the density of ITO ceramics, (ii) the dispersion of mechanical ball‐mill methods for nanosized In2O3 and SnO2 powders is beneficial to the densification and structural homogeneity, and (iii) the smaller the relative grain size, the more uniform the distribution of grain size.  相似文献   

16.
(Ba0.4Sr0.6)TiO3 (BST) ceramics with various grain sizes (0.5–5.6 μm) were prepared by conventional solid state reaction methods. The effect of grain size on the energy storage properties of BST ceramics (Tc  −65 °C) was investigated. With decreasing grain sizes, a clear tendency toward the diffuse phase transition was observed and the dielectric nonlinearity was reduced gradually, which can be explained by the Devonshire's phenomenological theory (from the viewpoint of intrinsic polarization). Based on the multi-polarization mechanism model, the relationship between the polarization behavior of polar nano-regions (the extrinsic nonlinear polarization mechanisms) and grain size was studied. The variation of the grain boundary density was thought to play an important role on the improvement of dielectric breakdown strength, account for the enhanced energy density, which was confirmed by the complex impedance spectroscopy analysis based on a double-layered dielectric model.  相似文献   

17.
Modified BaTiO3 ceramics that possess high dielectric permittivity and acceptable temperature stability have been widely utilized as multilayer ceramic capacitors (MLCCs) for high-frequency bypass and power filtering in automotive applications. However, since the increasing demand for high-capacity and small-size, high-permittivity materials that can serve as dielectric layers in MLCCs are urgently required. In this work, we design and fabricate a special BaTiO3-0.03Mg-0.02Y-0.02CaZrO3 ceramic with a high dielectric permittivity of 3000 and the dielectric variation below ±13% in the temperature range of -55–150°C, fulfilling the requirements of X8R capacitors. To achieve these results, we employed grain size engineering and cation doping, using BaTiO3 precursors with a particle size of 240 nm to prepare the BaTiO3-based ceramics with fine grains, while Mg and Y co-doping was used for improving the temperature stability due to dielectric dispersion. Utilizing these high-permittivity BaTiO3-based materials, we fabricated MLCCs that satisfy the X8R criterion, possessing a high dielectric constant of 2950 and a high breakdown field (410 kV/cm).  相似文献   

18.
Barium strontium titanate (Ba0.3Sr0.7TiO3, BST) ceramics have been prepared by conventional sintering (CS) and spark plasma sintering (SPS). The effects of phase constitution and microstructure on dielectric properties, electrical breakdown process and energy storage properties of the BST ceramics were investigated. The X-ray diffraction analysis and dielectric properties measurements showed that the cubic and tetragonal phase coexisted in the SPS sample while the CS sample contained only tetragonal phase. Much smaller grain size, lower porosity, fewer defects and dislocation were observed in SPS samples, which greatly improved the electrical breakdown strength of the Ba0.3Sr0.7TiO3 ceramics. The enhanced breakdown strength of the SPS samples resulted in an improved maximum electrical energy storage density of 1.13 J/cm3 which was twice as large as that of the CS sample (0.57 J/cm3). Meanwhile, the energy storage efficiency was improved from 69.3% to 86.8% by using spark plasma sintering.  相似文献   

19.
Two‐step crystallization process was employed to improve microstructure and energy‐storage density of the strontium barium niobate‐based/titanate‐based glass‐ceramics. By using two‐step crystallization process, the optimum nucleation temperature was obtained to improve dielectric breakdown strength. Compared to the breakdown strength by one‐step crystallization process, the breakdown strength by two‐step crystallization process is increased about 1.89 times with the optimum nucleation temperature. Energy‐storage density of 7.73 ± 0.26 J/cm3 is significantly improved by two‐step crystallization process and is about 2.9 times of 2.63 ± 0.17 J/cm3 by one‐step crystallization process. This result is attributed to the homogeneous nucleation improving the microstructures of glass‐ceramics. Identification and quantification of crystalline phases by using Rietveld refinement reveals the difference of dielectric constants for one‐step and two‐step crystallization processes.  相似文献   

20.
The radiation‐resistant response of BaTiO3 in the tetragonal and rhombohedral phases on exposure to 100 MeV Ag7+ ion irradiation was investigated by in situ X‐ray diffraction (XRD) at room temperature (300 K) and low temperature (25 K), respectively. This study revealed that the BaTiO3 in rhombohedral phase retained crystallinity up to an ion fluence of 1×1014 ions/cm2, whereas tetragonal phase amorphized at much lower fluence viz. 1×1013 ions/cm2. The in situ XRD along with Raman spectroscopy studies revealed that BaTiO3 in rhombohedral phase is more radiation resistant than that of tetragonal phase. The density functional theory (DFT) calculations confirmed higher bond strength of rhombohedral phase as compared to tetragonal phase, which supported the experimental result of higher radiation stability of rhombohedral phase. The theoretical predictions on high‐temperature phase will be of relevance to the nuclear waste applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号