首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
2.
A Johnson?CCook material model with an energy-based ductile failure criterion is developed in titanium alloy (Ti?C6Al?C4V) high-speed machining finite element analysis (FEA). Furthermore, a simulation procedure is proposed to simulate different high-speed cutting processes with the same failure parameter (i.e., density of failure energy). With this finite element (FE) model, a series of FEAs for titanium alloy in extremely high-speed machining (HSM) is carried out to compare with experimental results, including chip morphology and cutting force. In addition, the chip morphology and cutting force variation trends under different cutting conditions are also analyzed. Using this FE model, the ductile failure parameter is modified for one time, afterword, the same failure parameter is applied to other conditions with a key modification. The predicted chip morphologies and cutting forces show good agreement with experimental results, proving that this ductile failure criterion is appropriate for titanium alloy in extremely HSM. Moreover, a series of relatively low cutting speed experiments (within the range of HSM) were carried out to further validate the FE model. The predicted chip morphology and cutting forces agree well with the experimental results. Moreover, the plastic flow trend along an adiabatic shear band is also analyzed.  相似文献   

3.
We have developed a nanoreactor, sample holder and gas system for in-situ transmission electron microscopy (TEM) of hydrogen storage materials up to at least 4.5 bar. The MEMS-based nanoreactor has a microheater, two electron-transparent windows and a gas inlet and outlet. The holder contains various O-rings to have leak-tight connections with the nanoreactor. The system was tested with the (de)hydrogenation of Pd at pressures up to 4.5 bar. The Pd film consisted of islands being 15 nm thick and 50-500 nm wide. In electron diffraction mode we observed reproducibly a crystal lattice expansion and shrinkage owing to hydrogenation and dehydrogenation, respectively. In selected-area electron diffraction and bright/dark-field modes the (de)hydrogenation of individual Pd particles was followed. Some Pd islands are consistently hydrogenated faster than others. When thermally cycled, thermal hysteresis of about 10-16 °C between hydrogen absorption and desorption was observed for hydrogen pressures of 0.5-4.5 bar. Experiments at 0.8 bar and 3.2 bar showed that the (de)hydrogenation temperature is not affected by the electron beam. This result shows that this is a fast method to investigate hydrogen storage materials with information at the nanometer scale.  相似文献   

4.
In this study, the fretting fatigue resistance of AL7075-T6 alloy is investigated using surface treatment Ti–TiN multilayer coating by physical vapor deposition (PVD) magnetron sputtering technique. A fuzzy logic model was established to forecast the surface roughness of Ti–TiN coating on AL7075-T6 with respect to changes in the input process parameters of DC power, temperature, DC bias voltage, and nitrogen flow rate. The results indicate an agreement between the fuzzy model and experimental results with 95.349% accuracy. The fretting fatigue lives of Ti–TiN-coated specimens with the lowest surface roughness resulting from fuzzy logic were enhanced by 18% at low cyclic fatigue, while at high cyclic fatigue the result was reversed.  相似文献   

5.
Jin  Ying  Kato  Koji  Umehara  Noritsugu 《Tribology Letters》1999,6(3-4):225-232
The friction and wear behaviors of the self‐lubricating Al2O3–20Ag20CaF2 disk against an Al2O3 pin pair have been investigated over a broad load range from 1 to 30 N and sliding velocities from 0.084 to 1 m/s at 650°C. Four typical wear modes have been identified and the wear mode map was constructed to illustrate the influence of load and speed on the friction coefficient and wear rate. The results showed the effective self‐lubricating region (II) (continuous lubricating film) is almost independent of sliding speed, and mainly dependent on the load. It is suggested that the plastic deformation and plastic flow during sliding play an important role in the formation of the self‐lubricating film on the sliding surface. Furthermore, the worn surface in the region (II) (continuous lubricating film) was found to be much softer than the original surface and the distribution of Vickers hardness became more uniform due to the presence of the lubricating film on the worn surface. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号