首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
《Ceramics International》2021,47(20):28968-28975
(Ti1-xNbx)C (x=0, 0.2, 0.5 and 0.8) ceramic solid solutions were prepared by spark plasma sintering and their oxidation behaviours were investigated at 1000 °C in air. The niobium content was found to exhibit a remarkable influence on the oxidation resistance of (Ti1-xNbx)C solid solutions. An optimization of oxidation resistance was achieved in (Ti0.8Nb0.2)C. After oxidation at 1000 °C for 4 h, the oxidation layer thickness of (Ti0.8Nb0.2)C is less than 1/4 of the oxidation layer thickness of monolithic TiC. The higher oxidation resistance can be ascribed to the presence of Nb-doped rutile TiO2 phase in the oxidation layer of (Ti0.8Nb0.2)C. The (Ti,Nb)O2 phase suppressed the abnormal grain growth and the formation of cracks in the oxide layer, more importantly, it could effectively sluggish the outward diffusion of titanium during oxidation.  相似文献   

2.
Colossal permittivity (CP) (εr=104~105) is attained in (A1/3Nb2/3)xTi1xO2 (A=Ba2+, Ca2+, Zn2+, Mg2+) ceramics. Here, (Ca1/3Nb2/3)xTi1xO2 material was studied as a typical example, and effects of Ca and Nb on their microstructure, dielectric properties and stability were studied. Both backscattering and elements mapping strongly confirmed the formation of secondary phases due to the addition of Ca and/or Nb. Secondary phases‐induced by Ca cannot affect dielectric properties of the ceramics when low Ca and Nb contents were doped, while secondary phases formed by Ca and Nb strongly affected their dielectric properties in a high doping level. In particular, their dielectric properties can be well modified by the optimization of sintering temperatures. In addition, the (Ca1/3Nb2/3)xTi1xO2 ceramics with x=0.01 exhibited the optimum dielectric properties (εr=130500 and tan δ=0.19). Electron‐pinned defect‐dipoles may be suitable to explain CP phenomenon of this work. We believed that this profound investigation can benefit the development of new TiO2 ceramics as a CP material.  相似文献   

3.
Effect of isovalent Zr dopant on the colossal permittivity (CP) properties was investigated in (Zr + Nb) co‐doped rutile TiO2 ceramics, i.e., Nb0.5%ZrxTi1?xO2. Compared with those of single Nb‐doped TiO2, the CP properties of co‐doped samples showed better frequency‐stability with lower dielectric losses. Especially, a CP up to 6.4 × 104 and a relatively low dielectric loss (0.029) of x = 2% sample were obtained at 1 kHz and room temperature. Moreover, both dielectric permittivity and loss were nearly independent of direct current bias, and measuring temperature from room temperature to around 100°C. Based on X‐ray photoelectron spectroscopy, the formation of oxygen vacancies was suppressed due to the incorporation of Zrions. Furthermore, it induced the enhancement of the conduction activation energy according to the impedance spectroscopy. The results will provide a new routine to achieve a low dielectric loss in the CP materials.  相似文献   

4.
Giant dielectric permittivity (ε′) with low loss tangent (tanδ) was reported in (In + Nb) co‐doped TiO2 ceramics. Either of electron‐pinned defect‐dipole or internal barrier layer capacitor model was proposed to be the origin of this high dielectric performance. Here, we proposed an effectively alternative route for designing low‐tanδ in co‐doped TiO2 ceramics by creating a resistive outer surface layer. A pure rutile‐TiO2 phase with a dense microstructure and homogeneous dispersion of dopants was achieved in (In + Nb) co‐doped TiO2 ceramics prepared by a simple sol‐gel method. Two giant dielectric responses were observed in low‐ and high‐frequency ranges, corresponding to extremely high ε′≈106‐107 and large ε′≈104‐105, respectively. After annealing in air, a low‐frequency dielectric response disappeared and could be restored by removing the outer surface of the annealed sample, indicating the dominant electrode effect in the initial sample. Annealing can cause improved dielectric properties with a temperature‐ and frequency‐independent ε′ value of ≈1.9 × 104 and cause a decrease in tanδ from 0.1 to 0.035. High dielectric performance in (In0.5Nb0.5)xTi1?xO2 ceramics can be achieved by eliminating the electrode effect and forming a resistive outer surface layer.  相似文献   

5.
Nb-based ‘312’ MAX phase has not been recognized so far, raising a hypothesis that Nb doping would destabilize the isostructural Ti3AlC2. Here we report that (Ti1−xNbx)3AlC2 could persist with a doping limitation up to x = 0.15. As demonstrated by HAADF-STEM analysis, Nb dopants homogeneously distribute among polycrystalline grains at the microscale and randomly occupy the Ti sites at the atomic level. Beyond the limitation, Nb-doped ‘312’ phase Ti3AlC2 decomposes into (Ti,Nb)C, Nb-doped ‘211’ phase Ti2AlC, and Nb-based ‘413’ phase. Compared to pristine Ti3AlC2, the compressive strength of (Ti0.9Nb0.1)3AlC2 at 1200 °C increases by 130%, whereas doping at this level impairs the oxidation resistance. Improving high-temperature strength without deteriorating oxidation resistance can be achieved by 5% Nb doping.  相似文献   

6.
The isothermal oxidation behavior of in situ (TiB2 + TiC)/Ti3SiC2 composite ceramics with different TiB2 content has been investigated at 900-1200 °C in air for exposure times up to 20 h by means of X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive spectroscopy. The oxidation of (TiB2 + TiC)/Ti3SiC2 composites follows a parabolic rate law. With the increase in TiB2 content, the oxidation weight gain, thickness of the oxidation scale, and parabolic rate constant decrease dramatically, which suggests that the incorporation of TiB2 greatly improves the oxidation resistance of the composites. With the increase in oxidation temperature, the enhancement effect becomes more pronounced. Due to the incorporation of TiB2, the oxidation scale of (TiB2 + TiC)/Ti3SiC2 composites is generally composed of an outer layer of coarse-grained TiO2 and an inner layer of amorphous boron silicate and fine-grained TiO2. Only the dense inner layer formed on the surface acts as a diffusion barrier, retarding the inward diffusion of O, and consequently contributing to the improved oxidation resistance of the (TiB2 + TiC)/Ti3SiC2 composites.  相似文献   

7.
《Ceramics International》2023,49(3):4863-4871
Biochar was proposed as a novel carbon source for synthesizing Ti3SiC2 powder with high purity by a simple pressureless sintering at 1673 K, and Ti3SiC2 grains exhibited the typical nanolayered structure. The oxidation behavior of Ti3SiC2 powder showed the parabolic law during isothermal oxidation from 1273 K to 1473 K. Dense and continuous oxidation layer consisting of mixed TiO2 and SiO2 was formed rapidly on the surface of Ti3SiC2 particles as a diffusion barrier, which effectively retarded the inward diffusion of oxygen, conferring good oxidation resistance of the powder.  相似文献   

8.
《Ceramics International》2019,45(14):17258-17261
Ti3AlC2 ceramics were successfully joined with TiO2 and Nb2O5 respectively as interlayers via solid-state diffusion bonding at 1300 °C. The joints bonded with TiO2 and Nb2O5 exhibit distinct microstructures. Two continuous thin Al2O3 oxidation layers with a thickness around 1 μm were formed in the joints bonded with TiO2. Between the oxidation layers there exists a dense oxycarbide (TiC1-xOx) layer. For the joint bonded with Nb2O5, a dense bonding layer with Nb2AlC and Nb4AlC3 grains surrounded by thin Al2O3 oxidation layers at the grain boundaries were obtained. The shear strength of the final joints shows clear dependences on both the thickness and microstructure of the joints. Smaller joint thickness and the microstructure with complex phases favour for higher shear strength. Those result implies that bonding with oxides is a practical and efficient method for joining Ti3AlC2.  相似文献   

9.
Bi0.5Na0.5TiO3‐based incipient ferroelectrics with pseudocubic structure generally show weak ferro‐/piezoelectricity but giant field‐induced strains. It is difficult to artificially and smoothly improve the electrical property based on conventional chemical doping or substituting without changing the crystal structure and suppressing the strain. Here, by introducing the semiconductor ZnO into the lead‐free incipient ferroelectric ((Bi0.5(Na0.84K0.16)0.5)0.96Sr0.04)(Ti0.975Nb0.025)O3 (BNT–2.5Nb) to form 0‐3 type composites (BNT–2.5Nb:xZnO), we experimentally illustrate that the resistance and ferro‐/piezoelectric properties can be enhanced significantly with an unchanged crystal structure and only slightly suppressed strains. For example, the remanent polarization and piezoelectric coefficient increase from 4.6 μC/cm2 and 8 pC/N for x=0 to 9.0 μC/cm2 and 31 pC/N for x=0.3. At the same time, the total strain only decreases from 0.140% for x=0 to 0.108% for x=0.3, whereas the negative strain increases from ?0.003% for x=0 to ?0.010% for x=0.3. And the thermal stability of d33 is enhanced. The corresponding mechanism is attributed to that ZnO can form a local field, preventing the depolarization of field induced macroscopic ferroelectric domains. Our results not only provide a feasible way to tune electrical properties of BNT‐based incipient ferroelectrics, but also may stimulate further work on artificially structured high‐performance ferroelectrics.  相似文献   

10.
In order to simulate the contact situation of interconnect/contact layer/cathode in SOFC stacks, contact resistance and chemical compatibility of LaNi0.6Co0.4O3–δ (LNC) as contact layer between Crofer22APU interconnect and La0.6Sr0.4FeO3 (LSF) cathode was investigated at 800 °C in air for more than 1300 h using X‐ray diffraction (XRD), scanning electron microscopy (SEM) set‐up equipped with an energy dispersive X‐ray analyser (EDX) and area specific resistance (ASR) measurements. The XRD analysis reveals that multiple phases were formed during ASR test. The point microanalysis on cross‐section of Fe–Cr/LNC/LSF system, after ASR measurements, shows chromium within the porous contact material mainly concentrated close to interconnect, but no Cr, Ni, or Co was detected in the cathode. It was found between LNC and LSF cathode, a thin and uniform layer which contains Sr, La, Cr, Co, Ni, and Fe. The contact between layers could act as a physical barrier for element migration and thus can suppress degradation of the cathode for these systems. The area specific resistance slope depends on the interactions between the contact material and/or cathode and the interconnect. Co‐containing spinels formed during ASR test can be responsible of the resistance decrease of the system, related to the low degradation of the cell.  相似文献   

11.
In order to solve the problems of acceptor/donor individual doping in Li2TiO3 system and clarify the superiority mechanism of co‐doping for improving the Q value, Mg + Nb co‐doped Li2TiO3 have been designed and sintered at a medium temperature of 1260°C. The effects of each Mg/Nb ion on structure, morphology, grain‐boundary resistance and microwave dielectric properties are investigated. The substitution of (Mg1/3Nb2/3)4+ inhibits not only the diffusion of Li+ and reduction in Ti4+, but also the formation of microcracks in ceramics, which promotes the enhancement of Q value. The experiments reveal that Q × f value of Li2TiO3 ceramics co‐doped with magnesium and niobium is 113 774 GHz (at 8.573 GHz), which is increased by 113% compared with the pure Li2TiO3 ceramics. And the co‐doped ceramics have an appropriate dielectric constant of 19.01 and a near‐zero resonance frequency temperature coefficient of 13.38 ppm/°C. These results offer a scientific basis for co‐doping in Li2TiO3 system, and the outstanding performance of (Mg + Nb) co‐doped ceramics provides a solid foundation for widespread applications of microwave substrates, resonators, filters and patch antennas in modern wireless communication equipments.  相似文献   

12.
Using spark plasma sintering, Ti3AlC2/W composites were prepared at 1300°C. They contained “core‐shell” microstructures in which a TixW1?x “shell” surrounded a W “core”, in a Ti3AlC2 matrix. The composite hardness increased with W addition, and the hardening effect is likely achieved by the TixW1?x interfacial layer providing strong bonding between Ti3AlC2 and W, and by the presence of hard W. Microstructural development during high‐temperature oxidation of Ti3AlC2/W composites involves α‐Al2O3 and rutile (TiO2) formation ≥1000°C and Al2TiO5 formation at ~1400°C while tungsten oxides appear to have volatilized above 800°C. Likely due to exaggerated, secondary grain growth of TiO2‐doped alumina and the effect of W addition, fine (<1 μm) Al2O3 grains formed dense, anisomorphic laths on Ti3AlC2/5 wt%W surfaces ≥1200°C and coarsened to large (>5 μm), dense, TiO2‐doped Al2O3 clusters on Ti3AlC2/10 wt%W surfaces ≥1400°C. W potentially affects the oxidation behavior of Ti3AlC2/W composites beneficially by causing formation of TixW1?x thus altering the defect structure of Ti3AlC2, resulting in Al having a higher activity and by changing the scale morphology by forming dense Al2O3 laths in a thinner oxide coating, and detrimentally through release of volatile tungsten oxides generating cavities in the oxide scale. For Ti3AlC2/5 wt%W oxidation, the former beneficial effects appear to dominate over the latter detrimental effect.  相似文献   

13.
The effect of the Yb+Nb substitution for Ti on the microstructure, crystal structures, and dielectric properties of (Yb1/2Nb1/2)xTi1?xO2 (0.01≤x≤0.1) ceramics is investigated in this study. The results reveal that the solid solubility limit of the (Yb1/2Nb1/2)xTi1?xO2 ceramics is x=0.07, and the average grain sizes considerably decrease from 12 μm to 6 μm with x increasing from 0.01 to 0.1. Three types of dielectric relaxations are observed at temperature ranges of 10‐30 K, 80‐180 K, and 260‐300 K, caused by the electron‐pinned defect dipoles, polaron hopping, and interfacial polarizations, respectively. The conduction mechanism changes from nearest‐neighbor‐hopping to polaron hopping mechanism, which is confirmed by ac conductivity measurements. The present work indentifies the correlation between the colossal permittivity and polaron hopping process in the titled compound.  相似文献   

14.
Single‐phase lanthanum and niobium co‐doped strontium titanate (Sr1–3x/2LaxTi0.9Nb0.1O3; x = 0–0.02) ceramics were prepared. Dilatometry in reducing atmosphere showed an increase in the sintering rate and sintered density with an increase in La amount. Microscopy of fractured surfaces of sintered samples showed that the average grain size increased drastically in reducing conditions with increasing La content (and associated A‐site vacancies). By incorporating 2 mol.% La, the electronic conductivity significantly improved from 80 to 135 S cm−1 at 1,000 °C, and even larger improvements were observed at lower temperatures. These observations demonstrate the flexibility in tailoring the microstructure and electronic transport properties by doping small amounts of La into the Nb‐doped SrTiO3 and show that Sr1–3x/2LaxTi0.9Nb0.1O3 is a potential electrode material for solid oxide cells.  相似文献   

15.
Herein, two new two‐dimensional Nb4C3‐based solid solutions (MXenes), (Nb0.8,Ti0.2)4C3Tx and (Nb0.8,Zr0.2)4C3Tx (where T is a surface termination) were synthesized—as confirmed by X‐ray diffraction—from their corresponding MAX phase precursors (Nb0.8,Ti0.2)4AlC3 and (Nb0.8,Zr0.2)4AlC3. This is the first report on a Zr‐containing MXene. Intercalation of Li ions into these two compositions, and Nb4C3Tx was studied to determine the potential of those materials for energy storage applications. Lithiation and delithiation peaks at 2.26 and 2.35 V, respectively, appeared in the case of Nb4C3Tx, but were not present in Nb2CTx. After 20 cycles at a rate of C/4, the specific capacities of (Nb0.8,Ti0.2)4C3Tx and (Nb0.8,Zr0.2)4C3Tx were 158 and 132 mAh/g, respectively, both slightly lower than the capacity of Nb4C3Tx.  相似文献   

16.
The structure and electrical properties of perovskite layer structured (PLS) (1?x)Sr2Nb2O7x(Na0.5Bi0.5)TiO3 (SNO‐NBT) prepared by solid‐state reaction method are investigated. The addition of NBT is beneficial to speed up mass transfer and particle rearrangement during sintering, leading to better sinterability and higher bulk density up to 96.8%. The solid solution limit x in the SNO‐NBT system is below 0.03, over which Ti4+ is preferable to aggregate and results in the generation of secondary phase. After the modification by NBT, all SNO‐NBT ceramics have a Curie temperature Tc up to over 1300°C and piezoelectric constant d33 about 1.0 pC/N. The breakthrough of piezoelectricity can mainly be attributed to rotation and distortion of oxygen octahedron as well as higher poling electric field resulting from the improved bulk density. This study not only demonstrates how to improve piezoelectricity by NBT addition, but also opens up a new direction to design PLS piezoceramics by introducing appropriate second phase.  相似文献   

17.
Al/Nb co‐doped SrTiO3 microwave ceramics with the composition of SrTi1–x(Al0.5Nb0.5)xO3 (x = 0.03, 0.05, 0.1, and 0.15) have been synthesized via a standard solid‐state reaction method. The substitution of (Al0.5Nb0.5)4+ in B‐site inhibits the reduction in Ti4+ ions and the growth of grain size, then the transport of mobile charge carriers is limited, and thus the Q value is improved. For the SrTi0.9(Al0.5Nb0.5)0.1O3 ceramics, in addition to their high dielectric constant (εr ~185), they exhibit correspondingly a high Qf value (~ 9077 GHz) at 2.9 GHz, making the microwave ceramics suitable for myriad device miniaturization and high‐performance wireless communication.  相似文献   

18.
To improve the oxidation resistance of SiC composites at high temperature, the feasibility of using Ti3SiC2 coated via electrophoretic deposition (EPD) as a SiC fiber reinforced SiC composite interphase material was studied. Through fiber pullout, Ti3SiC2, due to its lamellar structure, has the possibility of improving the fracture toughness of SiCf/SiC composites. In this study, Ti3SiC2 coating was produced by EPD on SiC fiber; using Ti3SiC2‐coated SiC fabric, SiCf/SiC composite was fabricated by hot pressing. Platelet Ti3SiC2 powder pulverized into nanoparticles through high‐energy wet ball milling was uniformly coated on the SiC fiber in a direction in which the basal plane of the particles was parallel to the fiber. In a 3‐point bending test of the SiCf/SiC composite using Ti3SiC2‐coated SiC fabric, the SiCf/SiC composite exhibited brittle fracture behavior, but an abrupt slope change in the strength‐displacement curve was observed during loading due to the Ti3SiC2 interphase. On the fracture surface, delamination between each layer of SiC fabric was observed.  相似文献   

19.
The appearance of colossal permittivity materials broadened the choice of materials for energy-storage applications. In this work, colossal permittivity in ceramics of TiO2 co-doped with niobium and europium ions ((Eu0.5Nb0.5)xTi1-xO2 ceramics) was reported. A large permittivity (εr ~ 2.01?×?105) and a low dielectric loss (tanδ ~ 0.095) were observed for (Eu0.5Nb0.5)xTi1-xO2 (x?=?1%) ceramics at 1?kHz. Moreover, two significant relaxations were observed in the temperature dependence of dielectric properties for (Eu, Nb) co-doped TiO2 ceramics, which originated from defect dipoles and electron hopping, respectively. The low dielectric loss and high relative permittivity were ascribed to the electron-pinned defect-dipoles and electrons hopping. The (Eu0.5Nb0.5)xTi1-xO2 ceramic with great colossal permittivity is one of the most promising candidates for high-energy density storage applications.  相似文献   

20.
Interconnect‐cathode interfacial adhesion is important for the durability of solid oxide fuel cell (SOFC). Thus, the use of a conductive contact layer between interconnect and cathode could reduce the cell area specific resistance (ASR). The use of La0.6Sr0.4FeO3 (LSF) cathode, LaNi0.6Fe0.4O3–δ (LNF) contact layer and Crofer22APU interconnect was proposed as an alternative cathode side. LNF‐LSF powder mixtures were heated at 800 °C for 1,000 h and at 1,050 °C for 2 h and analyzed by X‐Ray power diffraction (XRD). The results indicated a low reactivity between the materials. The degradation occurring between the components of the half‐cell (LSF/LNF/Crofer22APU) was studied. XRD results indicated the formation of secondary phases, mainly: SrCrO4, A(B, Cr)O3 (A = La, Sr; B = Ni, Fe) and SrFe12O19. Scanning electron microscopy with energy dispersive X‐Ray spectroscopy (SEM‐EDX) and the X‐Ray photoelectron spectroscopy (XPS) analyzes confirmed the interaction between LSF/LNF and the metallic interconnect due to the Cr vaporization/migration. An increment of the resistance of ∼0.007 Ω cm2 in 1,000 h is observed for (LSF/LNF/Crofer22APU) sample. However, the ASR values of the cell without contact coating, (LSF/Crofer22APU), were higher (0.31(1) Ω cm2) than those of the system with LNF coated interconnect (0.054(7) Ω cm2), which makes the proposed materials combination interesting for SOFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号