首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The densification trajectories and mechanical properties of zirconia ceramics obtained by oscillatory pressure sintering (OPS) process were investigated, during the sintering process an oscillatory pressure was applied at three stages. Current results indicated that at intermediate stage the oscillatory pressure revealed a favorable improvement of mechanical properties compared with conventional hot pressing (HP) and pressureless sintering (PS) procedures, while the enhancement was not obvious at initial stage. When the oscillatory pressure was applied at final stage, the OPS specimens exhibited the highest bending strength and hardness of 1455 ± 99MPa and 16.6 ± 0.31GPa compared with the PS and HP specimens. Considering the high elastic modulus and Moiré patterns observed in the OPS specimen, the oscillatory pressure applied at intermediate and final stages was detected to facilitate the sliding of grain boundary, plastic deformation of monolithic grains, the removal of pores and the strengthening of atomic bonds.  相似文献   

2.
《Ceramics International》2020,46(9):13240-13243
Zirconia ceramics were prepared by oscillatory pressure sintering (OPS) and hot pressing (HP). The result revealed that OPS could enhance densification compared to HP when sintering temperature was higher than a critical value. The onset temperature for rapid grain growth was found to be same for both techniques. However, rate of grain growth in OPS was lower than that in HP. Furthermore, the result also showed that samples prepared by OPS exhibited higher hardness than those prepared by HP when sintering temperature was higher than the critical value. The improved hardness was solely due to the higher density of the samples prepared by OPS.  相似文献   

3.
A novel oscillatory pressure sintering (OPS) process to consolidate high-quality pure alumina ceramics is reported. The microstructure of the ceramics prepared by OPS develops into a higher final density, a smaller and a narrower distribution of grain sizes compared with those prepared by conventional pressureless sintering (PS) and hot-pressing (HP) processes. Enhanced mechanical properties of alumina ceramics were investigated by OPS process. The bending strength, hardness and elastic modulus of the OPS specimen reached about 546 MPa, 19.1 GPa and 374 GPa, respectively, i.e values significantly higher than that of the specimens by PS and HP. XRD analysis indicates the strengthening of atomic bonds aided by oscillatory pressure. The results suggest OPS to be an effective technique for preparing high-quality pure alumina ceramics.  相似文献   

4.
Conventional sintering techniques of yttria-tetragonal zirconia polycrystals (Y-TZP) ceramics have presented limitations regarding the sintering time and temperature, increasing the cost of the final dental and biomedical products. Herein, microwave sintering comes to be an interesting alternative by providing fast heating, high densification, and grain-size control. The aim of this study was to compare the effect of microwave sintering of Y-TZP dental ceramics prepared from a pre-sintered commercial block and produced from powders synthesized in a laboratorial scale by the precipitation route. The synthetized and commercial discs were submitted to microwave sintering at 1450°C and 1350°C for 15, 30, and 60 minutes. Densification, fracture toughness, grain size, and crystalline phase quantification of the sintered groups were evaluated. Both synthetized and commercial groups sintered at 1450°C for 15 and 30 minutes showed the higher densification results (98% TD). XRD quantitative phase analysis indicates that samples present 89% tetragonal and 11% cubic phases, except for the group prepared from coprecipitated powders sintered at 1450°C for 30 minutes, that presented 79% and 21% of tetragonal and cubic phases. The microwave sintering at 1450°C allows hardness and fracture toughness values comparable to conventional sintering.  相似文献   

5.
《Ceramics International》2020,46(11):18965-18969
Silicon carbide ceramics were prepared by liquid-phase assisted oscillatory pressure sintering (OPS) with graphene and in-situ synthesized SiC whisker as the reinforcements. The effects of sintering temperature on the densification, morphology and mechanical performances of the SiCp-SiCw-graphene ceramics were investigated. In the temperature range from 1700 to 1800 °C, the densification rate of SiCp-SiCw-graphene ceramics was accelerated, ascribing to the reduction in viscosity of the glassy phase. At 1800 °C, the flexural strength and fracture toughness of the OPS ceramics corresponded to 697 MPa and 5.8 MPa m1/2, respectively, which were higher than that of the hot-pressed ceramics under the same temperature conditions. Multiphase toughening mechanisms, such as whisker bridging and pullout, graphene bridging and delamination, were considered as the primary mechanisms. This work demonstrates an effective strategy to prepare silicon carbide ceramics at low sintering temperature.  相似文献   

6.
《Ceramics International》2016,42(12):13888-13892
A comparative analysis of the efficiency of zirconia ceramics sintering by thermal method and high-energy electron beam sintering was performed for compacts prepared from commercial TZ-3Y-E grade powder. The electron energy was 1.4 MeV. The samples were sintered in the temperature range of 1200–1400 °C. Sintering of zirconia ceramics by high-energy accelerated electron beam is shown to reduce the firing temperature by about 200 °C compared to that in conventional heating technique. Ceramics sintered by accelerated electron beam at 1200 °C is of high density, microhardness and smaller grain size compared to that produced by thermal firing at 1400 °C. Electron beam sintering at higher temperature causes deterioration of ceramics properties due to radiation-induced acceleration of high-temperature recrystallization at higher temperatures.  相似文献   

7.
We report a novel oscillatory pressure‐assisted hot‐pressing process for preparing high‐quality ceramics. Compared with the samples prepared by conventional pressureless sintering (PS) and hot‐pressing (HP), the zirconia ceramic prepared by oscillatory pressure‐assisted hot‐pressing (OPAHP) exhibited a higher density, smaller grain size, and more homogeneous structure. More remarkably, the strength of the OPAHP sample reached 1556 MPa, which is much higher than the samples prepared by other two techniques. The results suggest that OPAHP is a more effective technique for preparing high‐quality zirconia, which is likely applicable to other material systems.  相似文献   

8.
We report the preparation of a category of ultrastrong tough zirconia ceramics by engineering defects using an oscillatory pressure during pressure assisted sintering. The introduced oscillatory pressure enhances the dynamic grain rearrangement, plastic deformation, mass transportation, and pore removal, leading to the formation of pore-free ceramics characterized by the rich coherent grain boundaries among individual mesocrystalline grains with intragranular quasi-interfaces. As a proof of concept, the pressure required by oscillatory pressure sintering (OPS) for preparing fully dense 3Y-TZP ceramics is significantly reduced, which is just ∼1/5 of that required by hot isostatic pressing. The OPS-prepared 3Y-TZP ceramics reached a record-breaking high bending strength and fracture toughness, being up to 1.8 GPa and 16 MPa·m1/2, respectively. This success illustrates a universal principle of engineering defects for making breakthrough in exploring other ultrastrong tough ceramics.  相似文献   

9.
《Ceramics International》2022,48(8):10547-10554
Under high-frequency microwave irradiation, zirconia ceramics were prepared by sintering nano-CeO2 (Ce = 7 mol%) doped zirconia powder. The different effects of temperature environment on the phase structure transformation, surface functional groups, microstructure, growth process, and density of doped zirconia were analyzed, and the optimized microwave sintering process for zirconia was determined. The experimental results reveal that the tetragonal phase of zirconia is positively correlated with the temperature when the temperature reaches about 1100 °C in the studied range. The reason is that the grain grows with the increase of sintering temperature, and the surface energy of grain decreases, which leads to the fluctuation of tetragonal phase content. The density of zirconia reaches 98.03% at 1300 °C, and the growth activation energy is 27.40 kJ/mol. There is no abnormal growth of zirconia particles, and the phase transition temperature decreases, which is attributed to the efficient heating of microwave and the incorporation of nano-ceria stabilizer.  相似文献   

10.
Al2O3-based green ceramics are prepared by isostatic cold pressing technology. The prepared green ceramics are pre-sintered at the temperature from room temperature to 1100°C, and then Al2O3 ceramics are prepared by laser sintering. The effects of pre-sintering temperatures and laser parameters on mechanical properties and the sintering quality are analyzed. The results show that good crystallinity of Al2O3 particles is obtained at a higher pre-sintering temperature. The flexural strength and density of green ceramics increase with the temperature of heat treatment. The flexural strength decreases slightly at ∼200°C due to the paraffin binder disintegration. The pre-sintering temperature and laser processing parameters have a significant influence on the sintering quality. With the increase of laser power and laser frequency, dynamic grain growth occurs, and then grains are refined. The majority of plate-like grains are transformed into long cylindrical-like grains in the severe densification process. However, porous flocculation microstructures are generated on the samples pre-sintered at 1100°C after laser sintering, which is due to the material gasification in atmospheric environment during sintering by infrared laser. More uniform microstructure and better sintering quality of samples pre-sintered at 500°C can be achieved after laser sintering with a relatively narrower grain size distribution.  相似文献   

11.
Grain coarsening normally occurs at the final stage of sintering, resulting in trapped pores within grains, which deteriorates the density and the performance of ceramics, especially for ultra-high temperature ceramics (UHTCs). Here, we propose to sinter this class of ceramics in a specific temperature range and coupled with a relatively high pressure. The retarded grain boundary migration and pressure-enhanced diffusion ensure the proceeding of densification even at final stage. A highly dense TaC ceramic (98.6 %) with the average grain size of 1.48 μm was prepared under 250 MPa via high pressure spark plasma sintering using a Cf/C die at 1850 °C. It was suggested that the final-stage densification is mainly attributed to grain boundary plastic deformation-involved mechanisms. Compared to the usual sintering route using a high temperature (>2000 °C) and normal pressure (<100 MPa), this work provides a useful strategy to acquire highly dense and fine-grained UHTCs.  相似文献   

12.
The dependence of grain size on the heating rate has been investigated for alumina ceramics prepared via spark plasma sintering (SPS). For this purpose, the local grain size has been determined via position-dependent microscopic image analysis, using two independent grain size measures (mean chord length and Jeffries grain size). For alumina ceramics prepared with heating rates between 5 and 100 °C/min (pressure 80 MPa, maximum temperature 1300 °C) it is found that for higher heating rates the grain size is smaller. However, the microstructural non-uniformity is so large that any grain size determination that does not take this non-uniformity into account becomes meaningless, because grain size gradients from the specimen periphery to the center are larger than the differences in grain size due to different heating rates. Temperature and pressure gradients are discussed as the most plausible reasons for the microstructural non-uniformity.  相似文献   

13.
The influence of sintering temperature on the microstructure and mechanical properties of Al2O3?20 wt% ZrO2 composites fabricated by oscillatory pressure sintering (OPS) was investigated by means of X-ray diffraction, scanning electron microscopy, three-point bending test and Vickers indentation. Results were compared to specimens obtained by conventional hot pressing (HP) under a similar sintering schedule. The optimum oscillatory pressure sintering temperature was found to be 1600 °C; almost fully dense materials (99.94% of theoretical density) with homogeneous microstructure could be achieved. The highest flexural strength, fracture toughness and hardness of such composites reached 1145 MPa, 5.74 MPa m1/2 and 19.08 GPa when sintered at 1600 °C, respectively. Furthermore, the oscillatory pressure sintering temperature could be decreased by more than 50 °C as compared with the HP method, OPS favouring enhanced grain boundary sliding, plastic deformation and diffusion in the sintering process.  相似文献   

14.
《Ceramics International》2020,46(7):9297-9302
LiAlSiO4 (LAS) ceramics are prepared by using the sol-gel method followed by spark plasma sintering. XRD patterns and SEM images verify that the ceramics contain amorphous and LAS phases and that microcracks appear in the sample prepared at 900 °C due to its larger grain size. Compared with applied pressure and soaking time, sintering temperature has a greater impact on the crystallinity and density of the ceramics during sintering. High-temperature XRD results reveal that the LAS phase exhibits its intrinsic negative thermal expansion independently in all samples regardless of crystallinity. The coefficients of thermal expansion (CTE) measured by the dilatometric method change from positive values in samples prepared at 600 and 650 °C to near zero in samples prepared at 700 and 800 °C and then to a negative value in the sample prepared at 900 °C. The combined effects of an amorphous phase with a positive CTE and the LAS phase with a negative CTE are responsible for the observed transformation of thermal expansion in the samples. The calculated total CTEs of the glass-ceramic bulks are in agreement with the results measured through the dilatometric method in samples prepared at 650–800 °C. Microcracks in the sample prepared at 900 °C cause a more negative bulk CTE than the calculated CTE.  相似文献   

15.
In this research, the comparison between microwave sintering and conventional sintering on the mechanical properties and microstructural evolution of 3?mol% yttria-stabilised zirconia were studied. Green bodies were compacted and sintered at various temperatures ranging from 1200?°C to 1500?°C. The results showed that microwave assisted sintering was beneficial in enhancing the densification and mechanical properties of zirconia, particularly when sintered at 1200?°C. It was revealed that as the sintering temperature was increased to 1400?°C and beyond, the grain size and mechanical properties for both microwave- and conventional-sintered ceramics were comparable thus suggesting that the sintering temperature where densification mechanism was activated, grain size was strongly influenced by the sintering temperature and not the sintering mode.  相似文献   

16.
《应用陶瓷进展》2013,112(6):333-341
Transparent Polycrystalline Alumina (PCA) optical ceramics were fabricated at a high heating rate and low temperature by spark plasma sintering (SPS). Maximum pressure (100?MPa) at dwell time keeps the grain size small irrespective of the dwell time. A heating and cooling rate of 100°C?min?1 at the sintering temperature of 1150°C for a dwell time of 1?h at 100?MPa yielded highly densified samples with the good transparency of 63 and 83% in visible and infra-red region, respectively. Optoceramics yielded a mechanical hardness of (3000 Hv)/ 29.42?GPa and a thermal conductivity of 21?Wm?1?K?1.  相似文献   

17.
We recently developed a novel technique of cold sintering process (CSP) to obtain dense ceramics at extraordinarily low temperatures. In this communication, we demonstrate the feasibility of applying CSP to zirconia‐based ceramics. As exemplified by 3Y‐TZP ceramics, a significantly enhanced densification evolution is observed. Water is simply utilized as a sintering aid to assist the ceramic densification under an applied external pressure. The low‐temperature advantage of CSP outstands in contrast to the densification curves compiled from other sintering techniques. A gradual monoclinic‐to‐tetragonal phase transformation is revealed in correspondence to the densification development, as well as contributes to the mechanical hardness evolution. A Vickers Hardness reaches ~10.5 GPa after annealing the cold‐sintered ceramics at 1100°C, which is comparable to those values reported in the previous studies at higher sintering temperatures. Such a sintering methodology is of significant importance as it provides a roadmap for cost‐effective processing of zirconia‐based ceramics and composites that enable broad practical applications.  相似文献   

18.
Homogeneous rapid sintering of nanoparticle powder compacts of yttria-stabilized zirconia was achieved by the radiation heat transfer. Green bodies were prepared by cold isostatic pressing (CIP) at various pressures providing different porosity of samples before sintering. Pressure-less sintering was performed in air at a heating rate of 100 °C/min up to the 1500 °C/1 min. Scanning electron microscopy, mercury intrusion porosimetry, and Archimedes technique were used to characterize the microstructure and to determine the density of the green and sintered bodies. Contrary to expectations, our results reveal opposite dependence of the green- and sintered densities on the CIP pressure. Since the whole sintering process does not exceed 10 min, to propose what processes are responsible for observed results, our attention is focused on the radiation heat transfer from furnace heating elements into the ceramics. Our arguments are supported by numerical calculations of the electromagnetic field enhancement in/between particles.  相似文献   

19.
《Ceramics International》2020,46(6):7523-7530
Partially stabilized zirconia (PSZ) occupies an important application portion in ceramics materials and refractories materials. In this work, calcium oxide-partially stabilized zirconia (CaO-PSZ) ceramics were prepared from fused zirconia by microwave sintering, with its microstructure and stability properties characterized by XRD and SEM. Results indicated that the heating rate, cooling rate, quenching temperature and isothermal treatment time rendered different influence on the stability properties, which was mainly ascribed to the reversible martensitic transformation of zirconia ceramics. Additionally, a mixed-phase composed by cubic phase ZrO2 (c-ZrO2) and monoclinic phase ZrO2 (m-ZrO2) appeared after fused zirconia treated by microwave sintering at 1450 °C for 2 h, indicating the formation of CaO-PSZ ceramics, which the finding was consistent with the SEM and EDAX analysis. Meanwhile, CaO stabilizer precipitated behavior at the crystal boundary, with the formation of acicular grains and fine particles, further rendering a toughening effect to CaO-PSZ ceramics. This work can provide important theoretical and practical significance for applications of microwave sintering to prepare CaO-PSZ ceramics material, even extending further applications in functional materials and structural materials.  相似文献   

20.
Due to the sensitivity of nanopowders and the challenges in controlling the grain size and the density during the sintering of ceramics, a systematic study was proposed to evaluate the densification and the microstructure of ZnO ceramics using spark plasma sintering technique. Commercially available ZnO powder was dried and sintered at various parameters (temperature (400–900?°C), pressure (250–850?MPa), atmosphere (Air/Vacuum) etc.). High pressure sintering is desirable for maintaining the nanostructure, though it brings a difficulty in obtaining a fully dense ceramic. Whereas, increasing the temperature from 600 to 900?°C results in fully densified ceramics of about 99% which shows to have big impact on the grain size. However, a high relative density of 92% is obtained at a temperature as low as 400?°C under a pressure of 850?MPa. The application of pressure during the holding time seems to lower the grain size as compared to ceramics pressed during initial stage (room temperature).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号