首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low‐temperature sintering of β‐spodumene ceramics with low coefficient of thermal expansion (CTE) was attained using Li2O–GeO2 sintering additive. Single‐phase β‐spodumene ceramics could be synthesized by heat treatment at 1000°C using highly pure and fine amorphous silica, α‐alumina, and lithium carbonate powders mixture via the solid‐state reaction route. The mixture was calcined at 950°C, finely pulverized, compacted, and finally sintered with or without the sintering additive at 800°C–1400°C for 2 h. The relative density reached 98% for the sample sintered with 3 mass% Li2O–GeO2 additive at 1000°C. Its Young's modulus was 167 GPa and flexural strength was 115 MPa. Its CTE (from R.T. to 800°C) was 0.7 × 10?6 K?1 and dielectric constant was 6.8 with loss tangent of 0.9% at 5 MHz. These properties were excellent or comparative compared with those previously reported for the samples sintered at around 1300°C–1400°C via melt‐quenching routes. As a result, β‐spodumene ceramics with single phase and sufficient properties were obtained at about 300°C lower sintering temperature by adding Li2O–GeO2 sintering additive via the conventional solid‐state reaction route. These results suggest that β‐spodumene ceramics sintered with Li2O–GeO2 sintering additive has a potential use as LTCC for multichip modules.  相似文献   

2.
A CaO–Al2O3–SiO2 (CAS)‐based glass interlayer was developed for joining of porous alumina membrane tubes with dense alumina in this work. The results indicated that the interfacial microstructure of the joint was highly sensitive to the quench rate from the joining temperature, which rendered crystallization of CaTiSiO5 at a fast quench rate but CaAl2Si2O8 at a slow quench rate due to the interfacial reaction between the CAS glass interlayer and the substrate. An extra crystallization treatment during quench, i.e., dwelling at 800°C–900°C for 2 h, produced a multiphase interlayer consisting of LiAlSi2O6, CaTiSiO5, and CaAl2Si2O8. All joints were evaluated by the thermal shock test. The results showed that the LiAlSi2O6‐containing joint interlayer had much lower thermal shock resistance than those without LiAlSi2O6.  相似文献   

3.
As part of the complete thermodynamic modeling of the Na2O–FeO–Fe2O3–Al2O3 system, the Na2O–FeO–Fe2O3–Al2O3 phase diagrams in air (1583 and 1698 K) and at Fe saturation (1573 and 1673 K) were investigated using the quenching method followed by Electron Probe Micro‐Analyzer (EPMA) and X‐ray Diffraction (XRD) phase analysis. General features of the phase diagrams in this system were well revealed for the first time. A complete meta‐oxide solid solution between NaAlO2 and NaFeO2 was observed. An extensive solid solution of Na2(Al,Fe)12O19 Na‐β?‐alumina was found and the existence of a miscibility gap in this solution was confirmed. Several compatibility triangles of three‐phase assemblages were also identified in air and at Fe saturation.  相似文献   

4.
In order to improve the water solubility of sugar‐based surfactants, alkyl β‐d‐ xylopyranosides, novel sugar‐based surfactants, 1,2‐trans alkoxyethyl β‐d‐ xylopyranosides, with alkyl chain length n = 6–12 were stereoselectively prepared by the trichloroacetimidate method. Their properties including hydrophilic–lipophilic balance (HLB) number, water solubility, surface tension, emulsification, foamability, thermotropic liquid crystal, and hygroscopicity were investigated. The results indicated that their HLB number decreased with increase of alkyl chain, the water solubility improved since the hydrophilic oxyethene (─OCH2CH2─) fragment was introduced. The dissolution process was entropy driven at 25–45 °C for alkyl chain length n = 6–10. Octyloxyethyl β‐d‐ xylopyranoside had the best foaming ability. Nonyloxyethyl β‐d‐ xylopyranoside had the best foam stability and the emulsifying ability was better in toluene/water system than in rapeseed oil/water system. The surface tension of in aqueous solution dropped to 27.8 mN m?1 at the critical micelle concentration, and it also showed the most distinct thermotropic liquid phases with cross pattern texture upon heating and the fan schlieren texture on cooling. Hexyloxyethyl β‐d‐ xylopyranoside possessed the strongest hygroscopicity. Based on the effective improvement of water solubility, the prepared alkoxyethyl β‐d‐ xylopyranosides showed excellent surface activity and are expected to develop their practical application as a class of novel sugar‐based surfactants.  相似文献   

5.
Lithium aluminosilicate polymorphs α–LiAlSi2O6, β–LiAlSi2O6, and the LiAlSi2O6 glass have been studied comparatively using classical molecular dynamics (MD) simulations with an aim to better understand the structural origin of the different thermomechanical behaviors and lithium ion diffusion properties. The melting behaviors and structural evolution were investigated for the three phases using MD simulations. The structural features of the three simulated samples were analyzed using coordination number, pair and bond angle distributions. The results showed that β‐LiAlSi2O6 and the LiAlSi2O6 glass had similar melting behavior, had more random short‐range atomic structures, and lower densities as compared to the α‐LiAlSi2O6 phase, which has a more ordered and compact structure. The lithium ion diffusion behavior in α–LiAlSi2O6, β–LiAlSi2O6, and LiAlSi2O6 glass and their melts are determined and compared by calculating the mean square displacements. It was found that at high temperatures, the melts of α–LiAlSi2O6, β–LiAlSi2O6, and LiAlSi2O6 glass had similar diffusion properties. While at low temperatures, α–LiAlSi2O6 had the lowest diffusion coefficient and highest diffusion energy barrier due to its more close‐packed structure and lacking of defects to facilitate lithium ion diffusion. Both the β–LiAlSi2O6 and glass show high ionic conductivity even at low temperatures. This originates from their lower density and thus relatively open structures, but slightly different diffusion mechanisms. Lithium ion diffusion in β–LiAlSi2O6 is through the large available interstitial sites while that in the glass is through vacancies due to high free volume. The glass phase had slightly lower lithium ion diffusion energy barrier and higher lithium ion diffusion coefficients as compared to the β–LiAlSi2O6 phase, indicating the glass phase can achieve high ionic diffusion and, in some cases, even higher than the crystalline phases with similar densities and short‐range structures.  相似文献   

6.
Single‐phase β‐Yb2Si2O7 was synthesized by solid‐state reaction using Yb2O3 and SiO2 gel. SiO2 gel significantly decreased the synthesis temperature and shortened the holding time. Bulk Yb2Si2O7 was obtained by pressureless sintering. Grain size, relative density (92.9%), and flexural strength [(182.3 ± 2.0) MPa] were enhanced as the sintering temperature increased and equiaxed grains were obtained with an average grain size of approximately 3 μm. Bulk Yb2Si2O7 possessed a suitable thermal expansion coefficient [(4.64 ± 0.01) × 10?6/K] between 473 and 1573 K, and the thermal conductivities at 300 and 1400 K were 4.31 and 2.27 W/m·K, respectively.  相似文献   

7.
Based on phase equilibria, thermodynamic, and crystal structure data, the thermodynamic modeling of HfO2–La2O3–Al2O3 system is presented. Liquid phase is described by the modified quasichemical model considering the short‐range ordering in liquid solution. Solid solutions are described by the ionic sublattice model considering respective crystal structure. The model (La3+, Hf4+)2(Hf4+, La3+)2(O2?, Va)6(O2?)1(Va, O2?)1 successfully describes the structure defect, homogeneity range, and thermodynamic property of pyrochlore solid solution. A set of optimized model parameters is obtained which reproduces most experimental data well. Isothermal sections, liquidus and solidus projections, and Scheil reaction scheme are constructed.  相似文献   

8.
9.
Fine powders of GaOOH nanocrystals are synthesized via a facile hydrolysis process through the solution–solution interface reactions of anhydrous GaCl3 and distilled water followed by subsequent solvothermal treatment at mild conditions. Well‐faceted α‐GaOOH hexagonal prism‐like nanorods are prepared through solvothermal treatment at 180°C with CTAB as the morphology controlling surfactant. Ga2O3 nanocrystals are fabricated via the pyrolysis of α‐GaOOH hexagonal prism‐like nanostructures at temperatures above 410°C. A peculiar back‐transformation from β‐Ga2O3 to α‐Ga2O3 has been observed to occur between about 557°C and 719°C, which is considered to be responsible for the coexistence of the two phases. The phase transformation mechanisms of Ga2O3 at elevated temperatures, as well as the possible transformation route, have been postulated from a thermodynamic point of view.  相似文献   

10.
Although β‐spodumene/anorthite composites are interesting systems, little research work has been done to study their properties. This study aims at investigating the preparation and properties of β‐spodumene/anorthite composites containing β‐spodumene proportions ranging between 10 and 25 mass %. X‐ray diffraction analysis (XRD), Scanning electron microscopy (SEM), and the coefficient of thermal expansion (CTE) were used to characterize the effect of addition of β‐spodumene on the phase relations, microstructure, and thermal expansion behavior of resultant composites. The results show that the presence of β‐spodumene significantly reduces the porosity and reduces the densification temperature. It reduces thermal expansion and enhances the mechanical properties of anorthite‐containing composites.  相似文献   

11.
The behavior of heptakis(2,3‐di‐O‐methyl‐6‐O‐sulfopropyl)‐β‐cyclodextrin as inverse phase transfer catalyst in biphasic Tsuji–Trost and hydroformylation reactions has been investigated. In terms of activity, this methylated sulfopropyl ether β‐cyclodextrin is much more efficient than the randomly methylated β‐cyclodextrin, which was the most active cyclodextrin known to date. From a selectivity point of view, the intrinsic properties of the catalytic system are fully preserved in the presence of this cyclodextrin as the chemo‐ or regioselectivity was found to be identical to that observed without a mass transfer promoter in the hydroformylation reaction. The efficiency of this cyclodextrin was attributed to its high surface activity and to the absence of interactions with the catalytically active species and the water‐soluble phosphane used to dissolve the organometallic catalyst in the aqueous phase.  相似文献   

12.
A complete literature review, critical evaluation, and thermodynamic optimization of phase diagrams and thermodynamic properties of the MgO–MnO–Mn2O3–SiO2 system at 1 atm pressure are presented. The molten oxide phase was described by the Modified Quasichemical Model considering the short‐range ordering in molten oxide, and the Gibbs energies of solid solutions were described using the Compound Energy Formalism considering the crystal structure of each solid solution. A set of optimized model parameters of all phases was obtained which reproduces all available and reliable thermodynamic data and phase diagrams within experimental error limits from 25°C to above the liquidus temperatures over the entire range of composition under the oxygen partial pressures from metallic saturation to 1 atm. The database of the model parameters can be used along with software for the Gibbs energy minimization to calculate any phase diagram section and thermodynamic property within the present system.  相似文献   

13.
Solid oxide fuel cells (SOFCs) operating at intermediate temperature (500°C‐700°C) provide advantages of better durability, lower cost, and wider target application market. In this work, we have studied Sc2O3 (5‐11 mol%) stabilized ZrO2–CeO2 as a potential solid electrolyte for application in IT‐SOFCs. Lower Sc2O3 doping range than the traditional 11 mol% Sc2O3‐stabilized ZrO2 is an interesting research topic as it could potentially lead to an electrolyte with reduced oxygen vacancy ordering, lower cost, and higher mechanical strength. XRD and Raman spectroscopy was used to study the phase equilibrium in ZrO2–CeO2–Sc2O3 system and impedance spectroscopy was done to estimate the grain, grain boundary, and total ionic conductivities. Maximum for the grain and grain‐boundary conductivities as well as the tetragonal‐cubic phase boundary was found at 8‐9 Sc2O3 mol% in ZrO2‐1 mol% CeO2 system. It is suggested that the addition of 1 mol% CeO2 in the ZrO2 host lattice has improved the phase stability of high‐conductivity cubic and tetragonal phases at the expense of low‐conductivity t′‐ and β‐phases.  相似文献   

14.
Oligonucleotides containing various adducts, including ethyl, benzyl, 4‐hydroxybutyl and 7‐hydroxyheptyl groups, at the O4 atom of 5‐fluoro‐O4‐alkyl‐2′‐deoxyuridine were prepared by solid‐phase synthesis. UV thermal denaturation studies demonstrated that these modifications destabilised the duplex by approximately 10 °C, relative to the control containing 5‐fluoro‐2′‐deoxyuridine. Circular dichroism spectroscopy revealed that these modified duplexes all adopted a B‐form DNA structure. O6‐Alkylguanine DNA alkyltransferase (AGT) from humans (hAGT) was most efficient at repair of the 5‐fluoro‐O4‐benzyl‐2′‐deoxyuridine adduct, whereas the thymidine analogue was refractory to repair. The Escherichia coli AGT variant (OGT) was also efficient at removing O4‐ethyl and benzyl adducts of 5‐fluoro‐2‐deoxyuridine. Computational assessment of N1‐methyl analogues of the O4‐alkylated nucleobases revealed that the C5‐fluorine modification had an influence on reducing the electron density of the O4?Cα bond, relative to thymine (C5‐methyl) and uracil (C5‐hydrogen). These results reveal the positive influence of the C5‐fluorine atom on the repair of larger O4‐alkyl adducts to expand knowledge of the range of substrates able to be repaired by AGT.  相似文献   

15.
Compact Al2O3‐MgO·Al2O3‐CaO·6Al2O3 (AMC) composite was obtained by melting technology using industrial alumina, light‐burned magnesia, and quick lime as raw materials based on the Al2O3‐MgO‐CaO ternary phase diagram. The results show that the phases of MgO·Al2O3 and Al2O3 are formed as the main framework with plate‐like CaO·6Al2O3 crystals mainly discontinuously embedded in MgO·Al2O3. The bulk density of AMC composite is up to 3.42 g/cm3, equivalent to 90.5% of the theoretical density. The synthesized compact AMC composite in the work also exhibits better slag penetration resistance than the castable based on tabular corundum due to the formation of liquid phase.  相似文献   

16.
Synthesis and Characterization of O2S2 — and N2S2‐Transition Metal Complexes Starting from β‐Chloro‐β‐trifluoromethyl Vinylaldehydes The syntheses of complexes 4 and 5 with O2S2 ‐and N2S2 — donor atom sets are described as one‐step procedures. Their structures were confirmed by NMR, IR, UV‐ VIS and MS spectroscopy. One nickel complex 5a was determined by X‐ray structure analysis whereas the CuII complexes were studied by EPR spectroscopy.  相似文献   

17.
The first systematic study of the BaO–B2O3 system and barium orthoborate Ba3B2O6 (3BaO·B2O3) was reported in 1949. Thereafter, the system was repeatedly refined but the structure of Ba3B2O6 compound has not been adequately studied yet. In our study we have, for the first time, obtained the crystalline samples of Ba3B2O6. The solved structure (Pbam, a = 13.5923(4) Å, b = 13.6702(4) Å, c = 14.8894(3) Å) belongs to the class of ‘anti‐zeolite’ borates with a pseudotetragonal [Ba12(BO3)6]6+ cation pattern which contains channels along the c axis filled with anionic clusters. The Ba3B2O6 compound may be regarded as a fluorine‐free end‐member of the Ba3(BO3)2–xF3x solid solution. The BaO–B2O3 phase diagram presented in our study is based on our research and literature data.  相似文献   

18.
五元体系KCl-KBr-K2SO4-K2B4O7-H2O 323 K和348 K的相平衡   总被引:1,自引:0,他引:1       下载免费PDF全文
用等温溶解平衡法研究了五元体系KCl-KBr-K2SO4-K2B4O7-H2O在323 K和348 K时的相平衡关系,测定了该五元体系在相应温度条件下平衡溶液的溶解度和密度,根据相平衡实验数据绘制相应的相图(K2SO4饱和)。研究结果表明:该五元体系在323 K和348 K条件下均属于固溶体型,相图中均有2个平衡固相结晶区,其平衡固相分别为固溶体K(Cl,Br)和K2B4O7·4H2O,1条单变量曲线。该五元体系323 K和348 K的相图相比,348 K时K2 B4O7·4H2O结晶区变小,而固溶体K(Cl,Br)结晶区变大。  相似文献   

19.
0.73ZrTi2O6–0.27MgNb2O6 ceramics with various Al2O3 contents (0‐2.0 wt%) were prepared by conventional ceramic route. The effects of Al2O3 on the phase composition, microstructure, conductivity, and microwave dielectric properties were systematically investigated. The coexistence of a disordered α–PbO2‐type phase and a rutile second phase was found in all compact ceramics with low Al2O3 contents (= 0, 0.5, and 1.0 wt%), while a corundum phase was detected when Al2O3 additive increased to 1.5 and 2.0 wt% based on X‐ray diffraction results. With the addition of Al2O3, the decreased grain size of the matrix phase was observed using field‐emission scanning electron microscope, accompanied with increased resistivity and band‐gap energy. Additionally, Al2O3 additives efficiently improved the quality factor of the ceramics. After sintering at 1360°C for 3 hours, the ceramic with 1.0 wt% Al2O3 exhibited excellent microwave dielectric properties: a dielectric constant of 43.8, a quality factor of 33 900 GHz (at 6.6 GHz), and a near‐zero temperature coefficient of resonant frequency (3.1 ppm/°C).  相似文献   

20.
The BaO–Sm2O3 system is of interest for the optimization of synthesis of electroceramics. The only systematic experimental study of phase equilibria in the system was performed more than 40 years ago. The reported experimental values of the enthalpy of formation of BaSm2O4 are in conflict, and the reported compound Ba3Sm4O9 has never been confirmed. In this work we synthesized BaSm2O4 by solid‐state reaction and determined its heat capacity, enthalpy of formation, and phase transitions by differential scanning calorimetry, high‐temperature oxide melt solution calorimetry and ultra‐high‐temperature differential thermal analysis, respectively. We confirmed the existence of Ba3Sm4O9 and its apparent stability from 1873 to 2273 K by X‐ray diffraction on quenched laser‐melted samples but were not able to obtain single‐phase material for calorimetric measurements. The CALPHAD method was used to assess phase equilibria in the BaO–Sm2O3 system, using both available literature data and our new measurements. A self‐consistent thermodynamic database and the calculated phase diagram of the BaO–Sm2O3 system are provided. This work can be used to model and thus to understand the relationships among composition, temperature, and microstructure for multicomponent systems with BaO and Sm2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号