首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
High pyroelectric performance and good thermal stability of pyroelectric materials are desirable for the application of infrared thermal detectors. In this work, enhanced pyroelectric properties were achieved in a new ternary (1?x)(0.98(Bi0.5Na0.5)(Ti0.995Mn0.005)O3–0.02BiAlO3)–xNaNbO3 (BNT–BA–xNN) lead‐free ceramics. The effect of NN addition on the microstructure, phase transition, ferroelectric, and pyroelectric properties of BNT–BA–xNN ceramics were investigated. It was found that the average grain size decreased as x increased to 0.03, whereas increased with further NN addition. The pyroelectric coefficient p at room temperature (RT) was significantly increased from 3.87 × 10?8Ccm?2K?1 at = 0 to 8.45 × 10?8Ccm?2K?1 at = 0.03. The figures of merit (FOMs), Fi, Fv and Fd, were also enhanced with addition of NN. Because of high p (7.48 × 10?8Ccm?2K?1) as well as relatively low dielectric permittivity (~370) and low dielectric loss (~0.011), the optimal FOMs at RT were obtained at = 0.02 with Fi = 2.66 × 10?10 m/V, Fv = 8.07 × 10?2 m2/C, and Fd = 4.22 × 10?5 Pa?1/2, which are superior to other reported lead‐free ceramics. Furthermore, the compositions with  0.03 exhibited excellent temperature stability in a wide temperature range from 20 to 80°C because of high depolarization temperature (≥110°C). Those results unveil the potential of BNT–BA–xNN ceramics for infrared detector applications.  相似文献   

2.
Bi0.5Na0.5TiO3‐based incipient ferroelectrics with pseudocubic structure generally show weak ferro‐/piezoelectricity but giant field‐induced strains. It is difficult to artificially and smoothly improve the electrical property based on conventional chemical doping or substituting without changing the crystal structure and suppressing the strain. Here, by introducing the semiconductor ZnO into the lead‐free incipient ferroelectric ((Bi0.5(Na0.84K0.16)0.5)0.96Sr0.04)(Ti0.975Nb0.025)O3 (BNT–2.5Nb) to form 0‐3 type composites (BNT–2.5Nb:xZnO), we experimentally illustrate that the resistance and ferro‐/piezoelectric properties can be enhanced significantly with an unchanged crystal structure and only slightly suppressed strains. For example, the remanent polarization and piezoelectric coefficient increase from 4.6 μC/cm2 and 8 pC/N for x=0 to 9.0 μC/cm2 and 31 pC/N for x=0.3. At the same time, the total strain only decreases from 0.140% for x=0 to 0.108% for x=0.3, whereas the negative strain increases from ?0.003% for x=0 to ?0.010% for x=0.3. And the thermal stability of d33 is enhanced. The corresponding mechanism is attributed to that ZnO can form a local field, preventing the depolarization of field induced macroscopic ferroelectric domains. Our results not only provide a feasible way to tune electrical properties of BNT‐based incipient ferroelectrics, but also may stimulate further work on artificially structured high‐performance ferroelectrics.  相似文献   

3.
Lead‐free 0.77(Bi0.5Na0.5)TiO3–0.23Sr(Ti1?xFex)O3 (= 0, 0.04) (BNT–23STFx) was prepared using a conventional solid‐state reaction route. The effects of Fe‐modification on the chemical homogeneity from a μm scale perspective, the core‐shell domains structures, and the ferroelectric properties were investigated. The chemical homogeneity was analyzed using energy dispersive X‐ray mapping in scanning transmission electron microscopy mode, and the field‐dependent behaviors of strain and polarization were obtained to determine the ferroelectric properties. Substituting Fe3+ for Ti4+ resulted in completely different electrical behavior and properties, despite similar XRD patterns and microstructures. The Fe‐substitution promoted the mobility of Sr2+ ions in the BNT phase and, as a consequence, the chemical homogeneity increased and the core‐domains collapsed. Extending the ceramic processing, such as milling time and sintering time, affected domain distribution and compositional inhomogeneity, which led to a gradual transformation from ferroelectric to relaxor.  相似文献   

4.
Lead‐free 0.985[(0.94?x)Bi0.5Na0.5TiO3–0.06BaTiO3xSrTiO3]–0.015LiNbO3 [(BNT–BT–xST)–LN, x=0‐0.05] piezoelectric ceramics were prepared using a conventional solid‐state reaction method. It was found that the long‐range ferroelectric order in the unmodified (BNT–BT)–LN ceramic was disrupted and transformed into the ergodic relaxor phase with the ST substitution, which was well demonstrated by the dramatic decrease in remnant polarization (Pr), coercive field (Ec), negative strain (Sneg) and piezoelectric coefficient (d33). However, the degradation of the ferroelectric and piezoelectric properties was accompanied by a significant increase in the usable strain response. The critical composition (BNT–BT–0.03ST)–LN exhibited a maximum unipolar strain of ~0.44% and corresponding normalized strain, Smax/Emax of ~880 pm/V under a moderate field of 50 kV/cm at room temperature. This giant strain was associated with the coexistence of the ferroelectric and ergodic relaxor phases, which should be mainly attributed to the reversible electric‐field‐induced transition between the ergodic relaxor and ferroelectric phases. Furthermore, the large field‐induced strain showed relatively good temperature stability; the Smax/Emax was as high as ~490 pm/V even at 120°C. These findings indicated that the (BNT–BT–xST)–LN system would be a suitable environmental‐friendly candidate for actuator applications.  相似文献   

5.
The validity of Mn element on 0.93(Bi0.5Na0.5)TiO3‐0.07Ba(Ti0.945Zr0.055)O3 ceramics (BNT‐BZT‐xMn) is certified by doping. On account of multiple effects introduced by Mn, the appropriate Mn content facilitates property improvement effectively. Compared with pure BNT‐BZT, d33 of the component x = 0.25 increases about 8% up to 187 pC/N and Qm of the component x = 1 increases about 84% up to 197. Thermally stimulated depolarization currents (TSDC) measurement reveals Mn additive is helpful to pyroelectric properties as well. The Mn‐doped component x = 0.125 exhibits better pyroelectric performance at room temperature. Corresponding pyroelectric coefficient and the figures of merit reach up to 0.061 μC/(cm2 °C), Fi=217 pm/V, Fν = 0.023 m2/C, and Fd = 12.6 μPa?1/2, respectively, even superior to lead‐based ceramics. Similar pyroelectric advantage is also observed in the component x = 0.5 near depolarization temperature Td. Mn doping has slight harmful influence on the ferroelectric‐to‐relaxor transition temperature TF?R, as well as Td, but hardly shows restriction on application. These results confirm Mn doping is an available strategy to improve BNT‐based ceramics. Therefore, Mn‐doped BNT‐BZT ceramics will be excellent candidates in area of high‐power piezoelectric application and pyroelectric detectors.  相似文献   

6.
Defect greatly affects the microscopic structure and electrical properties of perovskite piezoelectric ceramics, but the microscopic mechanism of defect‐driven macroscopic properties in the materials is not still completely comprehended. In this work, K0.5Na0.5NbO3+x mol CuSb2O6 lead‐free piezoelectric ceramics were fabricated by a solid‐state reaction method and the defect‐driven evolution of piezoelectric and ferroelectric properties was studied. The addition of CuSb2O6 induces the formation of dimeric (DC1) and trimeric (DC2) defect dipoles. At low doping concentration of CuSb2O6 (0.5‐1.0 mol%), DC1 and DC2 coexist in the ceramics and harden the ceramics, inducing a constricted double P‐E loop and high Qm of 895 at x=0.01. However, DC2 becomes more dominant in the ceramics with high concentration of CuSb2O6 (≥1.5 mol%) and thus leads to softening behavior of piezoelectricity and ferroelectricity as compared to the ceramic with x=0.01, giving a single slanted P‐E loop and relatively low Qm of 206 at x=0.025. All ceramics exhibit relatively high d33 of 106‐126 pC/N. Our study shows that the piezoelectricity and ferroelectricity of K0.5Na0.5NbO3 ceramics can be tailored by controlling defect structure of the materials.  相似文献   

7.
x% mol MnO2‐doped Ba0.925Ca0.075TiO3 ceramics (abbreviated as BCT‐Mnx, x=0‐1.5) were synthesized by conventional solid‐state reaction method. The effects of MnO2 addition and (Ba+Ca)/Ti mole ratio (A/B ratio) on the microstructure and electrical properties of the ceramics were investigated. The internal bias filed Ei was determined from the asymmetrical polarization hysteresis loops and found to increase with the doping concentration of MnO2. High mechanical quality factors (Qm>1200) and low dielectric loss (tanδ<0.5%) were found in the BCT‐Mn0.75 and BCT‐Mn1.0 ceramics with Ei>3 kV/cm, meanwhile, the piezoelectric and electromechanical properties were found to decrease compared with the pure BCT, exhibiting a typical characteristic of “hard” behavior. Of particular interest is that the microstructure of BCT‐Mn0.75 ceramics could be controlled by changing the A/B ratio, where enhanced piezoelectric coefficient d33 on the order of 190 pC/N was obtained in the BCT‐Mn0.75 ceramics with A/B=1.01 due to its fine‐grained microstructure, with yet high Qm, being on the order of 1000. The high d33 and Qm in MnO2‐doped BCT ceramics make it a promising candidate for high power piezoelectric applications.  相似文献   

8.
The piezoelectric and ferroelectric properties of 0.76(Bi0.5Na0.5)TiO3–0.04(Bi0.5Li0.5)TiO3–0.2(Bi0.5K0.5)TiO3 (abbreviated as 0.76BNT–0.04BLT–0.2BKT) ceramics were investigated to clarify the optimal sintering temperature, and the vibration characteristics were examined for a compression‐mode accelerometer assembly in which 0.76BNT–0.04BLT–0.2BKT ceramics sintered at the optimized temperature served as the piezoelectric elements. The increase in the grain size of the 0.76BNT–0.04BLT–0.2BKT ceramics with the sintering temperature provides a beneficial contribution to the piezoelectric coefficient; however, it detrimentally contributes to the depolarization temperature. The charge sensitivity of the prototype accelerometers was evaluated with changes in the seismic mass and the layer number of the piezoceramics. The deviation between the theoretical and measured values of charge sensitivity was less than 10%.  相似文献   

9.
(Bi0.5Na0.5)TiO3 (BNT)-based ferroelectric ceramics have drawn extensive attention because of their excellent electrical properties and interesting depolarization behavior. However, the poor thermal stability of electrical properties limits their practical application. In this work, the effect of sintering temperature (Ts) on the depolarization behavior of BNT-based ceramics was systematically investigated. It is found that the depolarization temperature Td determined from pyroelectric measurement tends to decrease with increasing Ts, which indicates that lower Ts defers the ferroelectric-relaxor (FE-RE) phase transition. However, for the samples sintered at higher Ts (such as 1180°C), although the Td is reduced, the thermal stability is better compared with the sample sintered at lower Ts (1100°C) because the diffuse behavior of the FE-RE phase transition is suppressed. According to these results, we propose that the thermal stability of electrical properties for BNT-based ceramics is not only related to high Td, but also to the diffuse degree of phase transition.  相似文献   

10.
The relationship between the piezoelectric properties and the structure/microstructure for 0.05Bi(Mg2/3Nb1/3)O3‐(0.95‐x)BaTiO3xBiFeO3 (BBFT,= 0.55, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics has been investigated. Scanning electron microscopy revealed a homogeneous microstructure for < 0.75 but there was evidence of a core‐shell cation distribution for = 0.75 which could be suppressed in part through quenching from the sintering temperature. X‐ray diffraction (XRD) suggested a gradual structural transition from pseudocubic to rhombohedral for 0.63 < < 0.70, characterized by the coexistence of phases. The temperature dependence of relative permittivity, polarization‐electric field hysteresis loops, bipolar strain‐electric field curves revealed that BBFT transformed from relaxor‐like to ferroelectric behavior with an increase in x, consistent with changes in the phase assemblage and domain structure. The largest strain was 0.41% for x = 0.63 at 10 kV/mm. The largest effective piezoelectric coefficient (d33*) was 544 pm/V for = 0.63 at 5 kV/mm but the largest Berlincourt d33 (148 pC/N) was obtained for x = 0.70. We propose that d33* is optimized at the point of crossover from relaxor to ferroelectric which facilitates a macroscopic field induced transition to a ferroelectric state but that d33 is optimized in the ferroelectric, rhombohedral phase. Unipolar strain was measured as a function of temperature for = 0.63 with strains of 0.30% achieved at 175°C, accompanied by a significant decrease in hysteresis with respect to room temperature measurements. The potential for BBFT compositions to be used as high strain actuators is demonstrated by the fabrication of a prototype multilayer which achieved 3 μm displacement at 150°C.  相似文献   

11.
This work investigated the effect of MnO2 addition on the phase structure, microstructure, and electrical properties of AgSbO3‐modified (Li,K,Na)(Nb,Ta)O3 (abbreviated as LKNNT‐AS) lead‐free piezoelectric ceramics with an optimized composition endowed with a state of two‐phase coexistence. A small amount (0.1 wt%) of MnO2 can significantly further enhance the piezoelectric property of LKNNT‐AS ceramics, whose piezoelectric constant d33 and converse piezoelectric coefficient d33* as well as planar electromechanical coupling factor kp reach 363 pC/N, 543 pm/V, and 0.49, respectively. The temperature stability of piezoelectricity in MnO2‐modified LKNNT‐AS samples also improved, which is associated with the more uniform and better thermally stable ferroelectric domains that were revealed by piezoresponse force microscopy.  相似文献   

12.
A new lead‐potassium‐free ceramic of (0.9‐x)NaNbO3‐0.1BaTiO3‐xNaSbO3 (NN‐BT‐xNS) was successfully prepared via a solid‐state reaction method. The microstructure, phase structure, dielectric, ferroelectric, and piezoelectric properties were investigated as a function of NS content. The substitution of NS for NN was found to dramatically change the grain morphology from cube‐like grains typical for alkaline niobate‐based ceramics to conventional sphere‐like grains especially for Pb‐based perovskite ceramics. A normal to relaxor ferroelectric phase transformation was accompanied by a tetragonal (T) to rhombohedral (R) phase transition. A composition‐temperature phase diagram demonstrated a vertical morphotropic phase boundary between T and R phases in the composition range of x=0.03‐0.04, where optimum electrical properties of d33=252 pC/N, kp=36%, Qm=168, =2063, and Tc=109°C were obtained in the x=0.035 ceramic sintered at 1260°C. Particularly, excellent temperature insensitivity of small‐signal piezoelectric properties suggested large application potentials in various actuators and sensors in comparison with other typical lead‐free materials.  相似文献   

13.
The structure and electrical properties of perovskite layer structured (PLS) (1?x)Sr2Nb2O7x(Na0.5Bi0.5)TiO3 (SNO‐NBT) prepared by solid‐state reaction method are investigated. The addition of NBT is beneficial to speed up mass transfer and particle rearrangement during sintering, leading to better sinterability and higher bulk density up to 96.8%. The solid solution limit x in the SNO‐NBT system is below 0.03, over which Ti4+ is preferable to aggregate and results in the generation of secondary phase. After the modification by NBT, all SNO‐NBT ceramics have a Curie temperature Tc up to over 1300°C and piezoelectric constant d33 about 1.0 pC/N. The breakthrough of piezoelectricity can mainly be attributed to rotation and distortion of oxygen octahedron as well as higher poling electric field resulting from the improved bulk density. This study not only demonstrates how to improve piezoelectricity by NBT addition, but also opens up a new direction to design PLS piezoceramics by introducing appropriate second phase.  相似文献   

14.
Mn‐doped (Bi0.5Na0.5)0.94Ba0.06TiO3 (MnBNBT) thin films were prepared on SrRuO3 (SRO)‐coated (001) SrTiO3 (STO) single crystal substrates by pulsed laser deposition under different processing conditions. Structural characterization (i.e., XRD and TEM) confirms the epitaxial growth of STO/SRO/MnBNBT heterostructures. Through the judicious control of deposition temperature, the defect level within the films can be finely tuned. The MnBNBT thin film deposited at the optimized temperature exhibits superior ferroelectric and piezoelectric responses with remanent polarization Pr of 33.0 μC/cm2 and piezoelectric coefficient d33 of 120.0 ± 20 pm/V.  相似文献   

15.
CuO‐added 0.96(Na0.5K0.5)(Nb1‐xSbx)O3‐0.04SrTiO3 ceramics sintered at the low temperature of 960°C for 10 hours showed dense microstructures and high relative densities. The specimens with 0.0 ≤  x ≤ 0.04 had orthorhombic‐tetragonal polymorphic phase boundary (PPB) structure. Tetragonal‐pseudocubic PPB structure was observed in specimens with 0.05 ≤  x ≤ 0.07, while the specimen with x = 0.08 has a pseudocubic structure. The structural variation in the specimens is explained by the decreases in the orthorhombic‐tetragonal transition temperature and Curie temperature with the addition of Sb5+ ions. The specimens with 0.05 ≤  x ≤ 0.07, which have tetragonal‐pseudocubic PPB structure, had large electric field‐induced strains of 0.14%‐0.016%. Moreover, these specimens also showed increased d33 values between 280 pC/N and 358 pC/N. In particular, the specimen with x = 0.055 showed particularly enhanced piezoelectric properties: d33 of 358 pC/N, kp of 0.45, and the electric field‐induced strain of 0.16% at 4.5 kV/mm.  相似文献   

16.
In this paper, we theoretically and experimentally reported a lead-free pyroelectric infrared (PIR) detector using (Bi1/2Na1/2TiO3)-BaTiO3(BNT-BT) ferroelectric ceramics as the sensitive material. The variation of noise density, voltage response rate (RV), and specific detection rate (D*) with the modulation frequency under the current mode amplification circuit was investigated, and it was found that the lead-free PIR detector showed high RV in the low frequency band. The RV and D* reached 1.51 × 105 V/W and 2.02 × 108 cmHz1/2W−1 at 10 Hz, respectively. The results were much superior to the PIR based on traditional commercial pyroelectric ceramics, indicating that BNT-BT lead-free ceramics have great potential in application to PIR detectors.  相似文献   

17.
Quenching alkaline bismuth titanates from sintering temperatures results in increased lattice distortion and consequently higher depolarization temperature. This work investigates the influence of quenching on the ergodicity of relaxor Na1/2Bi1/2TiO3-BaTiO3-K0.5Na0.5NbO3. A distinct departure from ergodicity is evidenced from the increase in remanent polarization and the absence of frequency dispersion in the permittivity response of poled samples. Further, the samples exhibit enhanced negative strain upon application of electric field, indicating proclivity towards correlated polar nanoregions, corroborated by the enhanced tetragonal distortion. As a result, ergodic relaxor Na1/2Bi1/2TiO3-6BaTiO3-3K0.5Na0.5NbO3 exhibits a depolarization temperature of 85°C with a 60% increase in remanent polarization and approximately a threefold increase in remanent strain upon quenching. Quenching-induced changes in the local environment of Na+ and Bi3+ cations hinder the development of ergodicity promoted by the A-site disorder. These results provide new insight into tailoring ergodicity of relaxor ferroelectrics.  相似文献   

18.
The structural and dielectric properties of Na0.5Bi0.5TiO3 (NBT) ceramics and crystals have been investigated and are compared to that of Pb(Zr0.55Ti0.45)O3 (PZT55/45) and Pb(Mg1/3Nb2/3)0.72Ti0.28O3 (PMNT 72/28) ceramics. X-ray diffraction (XRD) profiles for (100), (110), (111), (200), (220), and (222) (referred to cubic structure) reveal that the monoclinic structure with Cc space group exists both in the NBT single crystal and ceramics. The diffraction profile obtained with high resolution laboratory XRD for the NBT single crystal can be well described, using Cc model instead of R3c model. The dielectric constant of NBT below Thump shows some similarity to that of PZT45/55 ceramics below 50°C in which oxygen octahedron rotations cause the frequency dispersion of the dielectric constant. The temperature-dependent dielectric constant for NBT can be deconvolved into two independent processes. The lower temperature process shows a typical relaxor characteristic and follows the Vogel-Fulcher relationship. The other process at higher temperature shows less frequency-dependent behavior. Comparing the dielectric constant of NBT with that of PZT55/45 and PMNT72/28 reveals that both oxygen octahedral rotations and random electric fields play an important role in the frequency dispersion of the dielectric constant for NBT relaxor feroelectric.  相似文献   

19.
Lead‐free perovskite (1‐x)(K0.48Na0.48Li0.04)Nb0.95Sb0.05O3x(Bi0.5Na0.5)HfO3 piezoelectric ceramics were prepared by a traditional ceramic fabrication method. An investigation was conducted to assess the effects of (Bi0.5Na0.5)HfO3 content on the crystal structure, microstructure, phase‐transition temperatures, and piezoelectric properties of the ceramics. The X‐ray diffraction results, combined with the temperature dependence of dielectric properties, revealed that the ceramics experienced a structural transition from an orthorhombic phase to a tetragonal phase with the addition of (Bi0.5Na0.5)HfO3, and a coexistence of orthorhombic and tetragonal phases was identified in the composition range of 0.005≤x≤0.015. An obviously improved piezoelectric activity was obtained for the ceramics with compositions near the orthorhombic‐tetragonal phase boundary, among which the composition x=0.005 exhibited the maximum values of piezoelectric constant d33, and planar and thickness electromechanical coupling coefficients (kp and kt) of 246 pC/N, 0.435, and 0.554, respectively. Furthermore, the Curie temperature of the ceramics was found decreasing with the increase in (Bi0.5Na0.5)HfO3 content, but still maintaining above 300°C for the phase boundary compositions. These results indicate that the ceramics are promising lead‐free candidate materials for piezoelectric applications.  相似文献   

20.
During high‐temperature crystal growth, lattice defects will inevitably form inside piezoelectric materials, which can be a hindrance for performance optimization. Through appropriate atmosphere control during sintering, defect levels inside the piezoelectric material can be regulated. Herein, CaZrO3‐modified (K, Na)NbO3‐based lead‐free piezoelectric ceramics with a nominal composition of 0.95(Na0.49K0.49Li0.02)(Nb0.8Ta0.2)O3‐0.05CaZrO3 are produced by sintering in an oxygen‐rich atmosphere. Compared with an air‐sintered sample, the piezoelectric constant of the oxygen‐sintered sample has greatly improved 15% up to 390 pC/N, which is comparable to commercial lead‐based counterparts. In addition, the planar electromechanical coupling factor kp is enhanced from 0.46 to 0.52. A qualitative model related to defect engineering is proposed to support the experimental observations. Our results indicate the feasibility of purposely optimizing the piezoelectric performance by sintering atmosphere control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号