首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Cation grain‐boundary diffusion in undoped and aliovalent‐doped Al2O3 is characterized using Cr2O3 as a chemical tracer. The compositional depth profiles measured by secondary ion mass spectrometry are fitted to the Whipple‐LeClaire model. The results indicate that cation grain‐boundary diffusivity is insensitive to MgO and SiO2 dopants between 1100°C and 1300°C.  相似文献   

2.
The dependence of energy storage properties on grain size was investigated in BaTiO3‐based ferroelectric ceramics. Modified BaTiO3 ceramics with different grain size were fabricated by two‐step sintering method from BaTiO3 powders doped with Al2O3 and SiO2 by aqueous chemical coating. For samples doped with ZnO sintering aid in addition to Al2O3‐SiO2, the density and breakdown strength increased significantly. In general, samples with smaller grains have lower polarization but higher energy storage efficiency. Al2O3‐SiO2‐ZnO‐doped samples with average grain size of 118±2 nm have an energy density of 0.83±0.04 J/cm3. Obvious segregation of doping elements in second phase and grain boundary was observed by TEM‐EDS. Impedance spectroscopy further explains the relationship between microstructure and properties. Compared to common energy storage ceramics, the grain size of this low‐cost ceramics sintered at relatively low temperature is small, and the pilot scale production has been well completed. All these features make the utilization in multilayer devices and industrial mass production possible. In addition, the obtained rules are helpful in further development of energy storage ceramics.  相似文献   

3.
4.
The effect of hot‐pressing temperature on the microstructure and Li‐ion transport of Al‐doped, cubic Li7La3Zr2O12 (LLZO) was investigated. At fixed pressure (62 MPa), the relative density was 86%, 97%, and 99% when hot‐pressing at 900°C, 1000°C, and 1100°C, respectively. Electrochemical impedance spectroscopy showed that the percent grain‐boundary resistance decreased with increasing hot‐pressing temperature. Hot pressing at 1100°C resulted in a total conductivity of 0.37 mS/cm at room temperature where the grain boundaries contributed to 8% of the total resistance; one of the lowest grain‐boundary resistances reported. We believe hot pressing is an appealing technique to minimize grain‐boundary resistance and enable correlations between LLZO composition and bulk ionic conductivity.  相似文献   

5.
To determine how grain‐boundary composition affects the liquid phase sintering of MgO‐free Bayer process aluminas, samples were singly or co‐doped with up to 1029 ppm Na2O and 603 ppm SiO2 and heated at 1525°C up to 8 h. Na2O retards densification of samples from the onset of sintering and up to hold times of 30 min at 1525°C compared to the undoped samples, but similar to the as‐received, MgO‐free Al2O3, Na2O‐doped samples sinter to 98% density with average grain sizes of ~3 μm after 8 h. Increasing SiO2 concentration significantly retards densification at all hold times up to 8 h. The estimated viscosities (20?400 Pa·s) of the 0.3 to 1.8 nm thick siliceous grain‐boundary films in this study indicate that diffusion greatly depends on the composition of the liquid grain‐boundary phase. For low Na2O/SiO2 ratios, densification of Bayer Al2O3 at 1525°C is controlled by diffusion of Al3+ through the grain‐boundary liquid, whereas for high Na2O/SiO2 ratios, densification can be governed by either the interface reaction (i.e., dissolution) of Al2O3 or diffusion of Al3+. Increasing Na2O in SiO2‐doped samples increases diffusion of Al3+ and Al2O3 solubility in the liquid, and thus densification increases by 1%. Based on these findings, we conclude that Bayer Al2O3 densification can be manipulated by adjusting the Na2O to SiO2 ratio.  相似文献   

6.
MoSi2‐ and WSi2‐based electroconductive ceramic composites were fabricated using 40‐80 vol% fine‐ and coarse‐Al2O3, and ZrO2 particles (refractory oxides) after sintering in argon. Their chemical and thermal stability was tested between 1400°C‐1600°C for up to 48 hours. X‐ray diffraction analysis showed the formation of secondary 5‐3 metal silicide (Mo5Si3, W5Si3) and silica phases on the grain boundaries and surface. The fraction of the W5Si3 (11.4‐38.8 vol%) was significantly higher than that of the Mo5Si3 (3.3‐7.3 vol%) in the composites after annealing at 1400°C for 48 hours. The rates of grain growth in the composites (0.013‐0.023 μm/h) were highly decreased by a grain‐boundary pinning effect. This effect was relatively better with the addition of the coarse‐grained oxides due to their more homogeneous distribution throughout the microstructure. The 20–80 vol% MoSi2‐Al2O3 (fine‐grained) composite exhibited an electrical conductivity of 8.8 S/cm at 900°C. At the 60 vol% silicide content, MoSi2–Al2O3 (coarse‐grained) and WSi2–Al2O3 (fine‐grained) showed higher electrical conductivity (126‐128 S/cm) at 900°C. The density, porosity level, particle distribution, intrinsic conductivity of silicide phase, particle size, and fraction of the secondary 5‐3 silicide phase highly influenced their electrical properties.  相似文献   

7.
To further enhance the electrical conductivity of doped ceria, the samarium‐doped ceria (SDC)/Al2O3 nanocomposites were prepared through sintering the coprecipitated powders in 1100°C‐1300°C. The grain sizes of all composites are less than 100 nm and decrease with alumina addition. Besides the main phases of SDC and Al2O3, the SmAlO3 can precipitate in the composites if sintered at higher temperatures or for longer dwell time. The deviations of SDC diffraction peak positions demonstrate the solid solution of alumina into SDC lattice. The total electrical conductivities of the composites increase with alumina content until 30% alumina is added. The SDC/30%Al2O3 presents the higher total conductivity than the pure SDC by about five times. Specifically, the grain interior conductivity generally decreases with the alumina addition while the grain‐boundary conductivity increases with that. The introduction of the conductive SDC/Al2O3 interface can contribute to the rise of total conductivity, yet the excessive alumina addition also blocks the oxygen ion conduction. The SmAlO3 precipitation is detrimental to the ion conduction for it consumes part of alumina and leads to the decrement in Sm concentration of SDC grain. Appropriate alumina addition not only enhances the conductivity of SDC but also lowers the material cost.  相似文献   

8.
Asymmetric structures were fabricated by depositing Y2O3‐doped SiO2 (Si/Y) membranes onto γ‐Al2O3 supported by tubular α‐Al2O3. The thickness of the Y2O3‐doped SiO2 deposits was approximately 100 nm. The deposits/membranes have micropores with a pore diameter ~ <0.40–0.55 nm. Pore size distribution measurements were conducted directly on the membranes before and after hydrothermal treatment with a nano‐permporometer. The gas permeance properties of the membranes were measured in the temperature range 100°C–500°C. The Y‐doped SiO2 membrane (Si/Y = 3/1) was found to exhibit asymptotically stable permeances of 2.39 × 10?7 mol/m2/s/Pa for He and 6.19 × 10?10 mol/m2/s/Pa for CO2, with a high selectivity of 386 (He/CO2) at 500°C for 20 h in the presence of steam. The Y‐doped silica membranes exhibit very high gas permeances for molecules with smaller kinetic diameters. The apparent activation energies of the H2 permeance at 400°C were 24.2 ± 0.2 and 21.3 ± 0.7 kJ/mol for SiO2 and Si/Y, respectively.  相似文献   

9.
The electrical conductivity of CaF2‐doped aluminum nitride (AlN) ceramics was characterized at high temperatures, up to 500°C, by AC impedance spectroscopy. High thermal conductive CaF2‐doped AlN ceramics were sintered with a second additive, Al2O3, added to control the electrical conductivity. The effects of calcium fluoride (CaF2) on microstructure and related electrical conductivity of AlN ceramics were examined. Investigation into the microstructure of specimens by TEM analysis showed that AlN ceramics sintered with only CaF2 additive have no secondary phases at grain boundaries. Addition of Al2O3 caused the formation of amorphous phases at grain boundaries. Addition of Al2O3 to CaF2‐doped AlN ceramics at temperatures 200°C–500°C revealed a variation in electrical resistivity that was four orders of magnitude larger than for the specimen without Al2O3. The amorphous phase at the grain boundary greatly increases the electrical resistivity of AlN ceramics without causing a significant deterioration of thermal conductivity.  相似文献   

10.
We investigate the high‐temperature compressive deformation behavior of a novel, fully dense and structurally uniform, 20 vol% multiwalled carbon nanotube (MWCNT)–α‐Al2O3 matrix hybrid, which has a strong room‐temperature interfacial shear resistance (ISR) and a unique MWCNT‐concentrated grain‐boundary (GB) structure. We realized a perfect plastic deformation at 1400°C and a rather high initial strain rate of 10?4 s?1 by a low ~30 MPa flow stress, which is contrary to the strain hardening response of fine‐grain monolithic Al2O3. This unique performance in CNT–ceramic system in compression is explained as follows: the concentrated network of individual MWCNTs perfectly withstands the high‐temperature and shear/compressive forces, and strongly preserves the nanostructure of Al2O3 matrix by preventing the dynamic grain growth, even during a large ~44% deformation. Furthermore, the presence of large amount of radially soft/elastic, highly energy‐absorbing MWCNTs in the GB and specially multiple junction areas, and a potentially weak 1400°C‐ISR, could greatly facilitate the GB sliding process (despite the hybrid's strong room‐temperature ISR), as evidenced by the formation of some submicrometer‐scale MWCNT aggregates in GB area, the equiaxed grains and dislocation‐free nanostructure of the deformed hybrid. The results presented here could be attractive for the ceramic forming industry and could be regarded as a reference for oxide systems in which, the GB areas are occupied with soft/elastic, highly energy‐absorbing nanostructures.  相似文献   

11.
Recovery of mechanical strength was investigated for 5 vol% Ni/α‐Al2O3 nanocomposites that had improved resistance to high‐temperature oxidation by doping with Y or Si (Ni/Al2O3‐Y and Ni/Al2O3‐Si). Surface cracks disappeared completely because of the oxidation product, NiAl2O4. The fraction of crack disappearance was comparable between Ni/Al2O3‐Y and Ni/Al2O3‐Si. The apparent activation energy of crack healing is similar to the grain‐boundary diffusion of Ni ions in an Al2O3 matrix. The rate‐controlling process of crack healing is the grain‐boundary diffusion of cations in an internally oxidized zone (IOZ) of the Ni/Al2O3 system. The bending strengths of the as‐sintered and as‐cracked Ni/Al2O3‐Y samples were 561 and 232 MPa, respectively. Heat treatment at 1200°C for 6 h resulted in a recovery of the bending strength up to 662 MPa for Ni/Al2O3‐Y as well as 606 MPa for Ni/Al2O3‐Si. Y and Si dopants were segregated into the Al site at the Al2O3 grain boundaries, and then, enhanced covalent bonding occurred with neighboring oxygen. While the flux of Ni ions was retarded slightly by doping with Y and Si, a shorter IOZ provided enough Ni ions to form NiAl2O4 on the surface. Ni/Al2O3‐Y and Ni/Al2O3‐Si have the desirable properties of crack healing and resistance to high‐temperature oxidation.  相似文献   

12.
Lithium ion conductors with garnet‐type structure are promising candidates for applications in all solid‐state lithium ion batteries, because these materials present a high chemical stability against Li metal and a rather high Li+ conductivity (10?3–10?4 S/cm). Producing densified Li‐ion conductors by lowering sintering temperature is an important issue, which can achieve high Li conductivity in garnet oxide by preventing the evaporation of lithium and a good Li‐ion conduction in grain boundary between garnet oxides. In this study, we concentrate on the use of sintering additives to enhance densification and microstructure of Li7La3ZrNbO12 at sintering temperature of 900°C. Glasses in the LiO2‐B2O3‐SiO2‐CaO‐Al2O3 (LBSCA) and BaO‐B2O3‐SiO2‐CaO‐Al2O3 (BBSCA) system with low softening temperature (<700°C) were used to modify the grain‐boundary resistance during sintering process. Lithium compounds with low melting point (<850°C) such as LiF, Li2CO3, and LiOH were also studied to improve the rearrangement of grains during the initial and middle stages of sintering. Among these sintering additives, LBSCA and BBSCA were proved to be better sintering additives at reducing the porosity of the pellets and improving connectivity between the grains. Glass additives produced relative densities of 85–92%, whereas those of lithium compounds were 62–77%. Li7La3ZrNbO12 sintered with 4 wt% of LBSCA at 900°C for 10 h achieved a rather high relative density of 85% and total Li‐ion conductivity of 0.8 × 10?4 S/cm at room temperature (30°C).  相似文献   

13.
Solid oxide fuel cells (SOFCs) operating at intermediate temperature (500°C‐700°C) provide advantages of better durability, lower cost, and wider target application market. In this work, we have studied Sc2O3 (5‐11 mol%) stabilized ZrO2–CeO2 as a potential solid electrolyte for application in IT‐SOFCs. Lower Sc2O3 doping range than the traditional 11 mol% Sc2O3‐stabilized ZrO2 is an interesting research topic as it could potentially lead to an electrolyte with reduced oxygen vacancy ordering, lower cost, and higher mechanical strength. XRD and Raman spectroscopy was used to study the phase equilibrium in ZrO2–CeO2–Sc2O3 system and impedance spectroscopy was done to estimate the grain, grain boundary, and total ionic conductivities. Maximum for the grain and grain‐boundary conductivities as well as the tetragonal‐cubic phase boundary was found at 8‐9 Sc2O3 mol% in ZrO2‐1 mol% CeO2 system. It is suggested that the addition of 1 mol% CeO2 in the ZrO2 host lattice has improved the phase stability of high‐conductivity cubic and tetragonal phases at the expense of low‐conductivity t′‐ and β‐phases.  相似文献   

14.
Nitrogen‐doped mullite fibers were first synthesized through the nitridation of Al2O3–SiO2 gel fibers in NH3. The results showed that nitrogen take‐up began at 800°C, reached the maximum at 900°C, and then decreased with increasing temperature. The ceramic fibers nitridated at 900°C were essentially amorphous, but contained a small amount of nano‐sized Al–Si spinel crystals. Mullite was formed after nitridation at 1200°C, accompanied by crystallization of χ‐SiAlON and δ‐Al2O3. The incorporation of nitrogen resulted in the formation of a variety of nitrogen‐containing crystalline phases. The grain size of the mullite fibers can be adjusted by changing of the nitrogen content.  相似文献   

15.
Disperse fine equiaxed α‐Al2O3 nanoparticles with a mean particle size of 9 nm and a narrow size distribution of 2–27 nm were synthesized using α‐Fe2O3 as seeds and isolation via homogeneous precipitation‐calcination‐selective corrosion processing. The presence of α‐Fe2O3 acting as seeds and isolation phase can reduce the formation temperature to 700°C and prevent agglomeration and growth of α‐Al2O3 nanoparticles, resulting in disperse fine equiaxed α‐Al2O3 nanoparticles. These α‐Al2O3 nanoparticles were pressed into green compacts at 500 MPa and sintered first by normal sintering to study their sintering behavior and finally by two‐step sintering (heated to 1175°C without hold and decreased to 1025°C with a 20 h hold in air) to obtain nanocrystalline α‐Al2O3 ceramics. The two‐step sintered bodies are nanocrystalline α‐Al2O3 with an average grain size of 55 nm and a relative density of 99.6%. The almost fully dense nanocrystalline α‐Al2O3 ceramic with finest grains achieved so far by pressureless sintering reveals that these α‐Al2O3 nanoparticles have an excellent sintering activity.  相似文献   

16.
The grain boundary mobility of polycrystalline alumina (α‐Al2O3), and the effective grain boundary mobility of the basal (0001) plane as it grew into polycrystalline alumina, was determined for undoped alumina, alumina doped with 23 ppm MgO, and alumina doped with 13 ppm CaO at 1600°C. Doping with MgO at a level below the solubility limit decreased the grain‐boundary mobility from 2.7 × 10?15 to 1.5 × 10?15 m2/s, and doping with CaO at a level below the solubility limit increased the mobility to 3.5 × 10?15 m2/s. For the undoped samples at 1600°C, the activation energy for the average grain boundary mobility was 372 ± 39 kJ/mol. The mobility of the (0001) plane growing into alumina doped with MgO at a level below the solubility limit decreased to 1.1 × 10?15 m2/s compared with the mobility of the (0001) plane growing into undoped alumina (2.5 × 10?15 m2/s), and the mobility of the (0001) plane growing into alumina doped with CaO (below the solubility limit) increased to 3.2 × 10?15 m2/s. The activation energy for the mobility of the (0001) plane was 483 ± 76 kJ/mol. Although a measured Ca excess of 2.6 Ca/nm2 at the boundary between the (0001) plane and CaO‐doped alumina is correlated with an increased mobility, the platelike morphology of CaO‐doped polycrystalline alumina is associated with an increased mobility of nonbasal planes.  相似文献   

17.
The liquid‐phase sintering behavior and microstructural evolution of x wt% LiF aided Li2Mg3SnO6 ceramics (x = 1‐7) were investigated for the purpose to prepare dense phase‐pure ceramic samples. The grain and pore morphology, density variation, and phase structures were especially correlated with the subsequent microwave dielectric properties. The experimental results demonstrate a typical liquid‐phase sintering in LiF–Li2Mg3SnO6 ceramics, in which LiF proves to be an effective sintering aid for the Li2Mg3SnO6 ceramic and obviously reduces its optimum sintering temperature from ~1200°C to ~850°C. The actual sample density and microstructure (grain and pores) strongly depended on both the amount of LiF additive and the sintering temperature. Higher sintering temperature tended to cause the formation of closed pores in Li2Mg3SnO6x wt% LiF ceramics owing to the increase in the migration ability of grain boundary. An obvious transition of fracture modes from transgranular to intergranular ones was observed approximately at x = 4. A single‐phase dense Li2Mg3SnO6 ceramic could be obtained in the temperature range of 875°C‐1100°C, beyond which the secondary phase Li4MgSn2O7 (<850°C) and Mg2SnO4 (>1100°C) appeared. Excellent microwave dielectric properties of Q × f = 230 000‐330 000 GHz, εr = ~10.5 and τf = ~?40 ppm/°C were obtained for Li2Mg3SnO6 ceramics with x = 2‐5 as sintered at ~1150°C. For LTCC applications, a desirable Q × f value of ~133 000 GHz could be achieved in samples with x = 3‐4 as sintered at 875°C.  相似文献   

18.
In this study, calcium lanthanum sulfide (CaLa2S4, CLS) ceramics with the cubic thorium phosphate structure were sintered at different temperatures by field‐assisted sintering technique (FAST). Densification behavior and grain growth kinetics were studied through densification curves and microstructural characterizations. It was determined that the densification in the 850°C‐950°C temperature range was controlled by a mixture of lattice or grain‐boundary diffusion, and grain‐boundary sliding. It was revealed that grain‐boundary diffusion was the main mechanism controlling the grain growth between 950°C and 1100°C. The infrared (IR) transmittance of the FAST‐sintered CLS ceramics was measured and observed to reach a maximum of 48.1% at 9.2 μm in ceramic sintered at 1000°C. In addition, it was observed that the hardness of the CLS ceramics first increased with increasing temperature due to densification, and then decreased due to a decrease in dislocations associated with grain growth.  相似文献   

19.
Chemical (impurity) tracer diffusion of Pr, Nd, and Co into polycrystalline La2NiO4+δ was done at 950°C–1350°C in air, argon, and intermediate pO2 (5.5 × 10?3 atm O2), and diffusion coefficients were extracted from depth profiles determined by Secondary Ion Mass Spectrometry (SIMS). The Pr and Nd profiles have only one broad region, corresponding to bulk diffusion, whereas the Co tracer depth profile has two distinct regions with different slopes, where the outer shallow region represents bulk diffusion and the inner region with deep penetration depths represents grain‐boundary diffusion. It is thus concluded that the diffusivity on the Ni‐site is enhanced by grain‐boundary diffusion. The bulk diffusion was evaluated using the solution of Fick's second law for thin‐film source, and the grain‐boundary diffusion was evaluated according to Whipple‐Le Claire's equation. The average apparent activation energies for Pr and Nd bulk diffusion are 165 ± 15 kJ/mol, for Co bulk diffusion 295 ± 15 kJ/mol, and for Co grain‐boundary diffusion 380 ± 20 kJ/mol. Qualitatively, the diffusivities and activation energies follow levels and trends in agreement with those from other experimental techniques. The apparent lack of—in fact reverse—correlation between activation energy and level of diffusivity is discussed in terms of a possibility that the faster species (Ni) reach equilibrium defect concentrations while the slower (La) is in effect frozen in.  相似文献   

20.
The effects of high‐energy ball milling and subsequent calcination on the formation of barium aluminate cementing phases using mixtures of Al2O3 and BaCO3 were investigated. Silica fume was further added in the raw mixtures to observe its role on the cementing phase formation. Results indicated that the decomposition temperature of BaCO3 lowered remarkably with the increase in milling time. Barium aluminate cements with grain size in nanometer range were obtained from high‐energy ball‐milled raw mixtures. X‐ray diffraction (XRD) results confirmed several crystalline barium‐silicate and barium aluminate phases present. Formation of crystalline BaO·Al2O3 phase was observed between 1000°C and 1100°C in the raw mixtures, which were obtained in amorphous state after milling for 5 h. This temperature is at least 300°C lower than that used in the traditional solid‐state method. Fume SiO2 additions resulted in BaO·Al2O3·2SiO2 (celsian) formation which acted as a retarder, provides more workability and mechanical strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号