首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The liquid‐phase sintering behavior and microstructural evolution of x wt% LiF aided Li2Mg3SnO6 ceramics (x = 1‐7) were investigated for the purpose to prepare dense phase‐pure ceramic samples. The grain and pore morphology, density variation, and phase structures were especially correlated with the subsequent microwave dielectric properties. The experimental results demonstrate a typical liquid‐phase sintering in LiF–Li2Mg3SnO6 ceramics, in which LiF proves to be an effective sintering aid for the Li2Mg3SnO6 ceramic and obviously reduces its optimum sintering temperature from ~1200°C to ~850°C. The actual sample density and microstructure (grain and pores) strongly depended on both the amount of LiF additive and the sintering temperature. Higher sintering temperature tended to cause the formation of closed pores in Li2Mg3SnO6x wt% LiF ceramics owing to the increase in the migration ability of grain boundary. An obvious transition of fracture modes from transgranular to intergranular ones was observed approximately at x = 4. A single‐phase dense Li2Mg3SnO6 ceramic could be obtained in the temperature range of 875°C‐1100°C, beyond which the secondary phase Li4MgSn2O7 (<850°C) and Mg2SnO4 (>1100°C) appeared. Excellent microwave dielectric properties of Q × f = 230 000‐330 000 GHz, εr = ~10.5 and τf = ~?40 ppm/°C were obtained for Li2Mg3SnO6 ceramics with x = 2‐5 as sintered at ~1150°C. For LTCC applications, a desirable Q × f value of ~133 000 GHz could be achieved in samples with x = 3‐4 as sintered at 875°C.  相似文献   

2.
La1‐xZnxTiNbO6‐x/2 (LZTN‐x) ceramics were prepared via a conventional solid‐state reaction route. The phase, microstructure, sintering behavior, and microwave dielectric properties have been systematically studied. The substitution of a small amount of Zn2+ for La3+ was found to effectively promote the sintering process of LTN ceramics. The corresponding sintering mechanism was believed to result from the formation of the lattice distortion and oxygen vacancies by means of comparative studies on La‐deficient LTN ceramics and 0.5 mol% ZnO added LTN ceramics (LTN+0.005ZnO). The resultant microwave dielectric properties of LTN ceramics were closely correlated with the sample density, compositions, and especially with the phase structure at room temperature which depended on the orthorhombic‐monoclinic phase transition temperature and the sintering temperature. A single orthorhombic LZTN‐0.03 ceramic sintered at 1200°C was achieved with good microwave dielectric properties of εr~63, Q×f~9600 GHz (@4.77 GHz) and τf ~105 ppm/°C. By comparison, a relatively high Q × f~80995 GHz (@7.40 GHz) together with εr~23, and τf ~?56 ppm/°C was obtained in monoclinic LTN+0.005ZnO ceramics sintered at 1350°C.  相似文献   

3.
Solid solutions of (1?x)BaTiO3xBi(Mg2/3Nb1/3)O3 (0 ≤ x ≤ 0.6) were prepared via a standard mixed‐oxide solid‐state sintering route and investigated for potential use in high‐temperature capacitor applications. Samples with 0.4 ≤ x ≤ 0.6 showed a temperature independent plateau in permittivity (εr). Optimum properties were obtained for x = 0.5 which exhibited a broad and stable relative εr ~940 ± 15% from ~25°C to 550°C with a loss tangent <0.025 from 74°C to 455°C. The resistivity of samples increased with increasing Bi(Mg2/3Nb1/3)O3 concentration. The activation energies of the bulk were observed to increase from 1.18 to 2.25 eV with an increase in x from 0 to 0.6. These ceramics exhibited excellent temperature stable dielectric properties and are promising candidates for high‐temperature multilayer ceramic capacitors for automotive applications.  相似文献   

4.
Spinel Zn1‐xCuxGa2O4 (= 0‐0.15) ceramics were prepared by the conventional solid‐state method. Only a single phase was indexed in all samples. The continuous lattice contraction of ZnGa2O4 unit cell was caused by Cu2+ substitution, and the lattice parameter shows a linear correlation with the content of Cu. The refined crystal structure parameters suggest that Cu2+ preferentially occupies the octahedron site, and the degree of inversion of Zn1‐xCuxGa2O4 (= 0‐0.15) ceramics almost equals to the content of Cu2+. The relative intensity of A*1g mode in Raman spectra confirm that the degree of inversion climbed with the growing content of Cu2+. The experimental and theoretical dielectric constant of Zn1‐xCuxGa2O4 ceramics fit well. Zn1‐xCuxGa2O4 (= 0.01) ceramics sintered at 1400°C for 2 h exhibited good microwave dielectric properties, with εr = 9.88, Q × = 131,445 GHz, tanδ = 6.85 × 10?5, and τf = ?60 ppm/°C.  相似文献   

5.
Spinel Mg(Al1?xGax)2O4 (= 0–1) solid solutions were synthesized via solid‐state method. Replacement of Al3+ by Ga3+ in MgAl2O4 gave rise to the expansion of the lattice, as well as blueshifts of FT‐IR and Raman peaks. The homogeneous solid solutions, high relative densities, large grain sizes, and compact microstructures resulted in excellent microwave dielectric properties for spinel Mg(Al1?xGax)2O4 (= 0.6) ceramics sintered at 1485°C: that is, εr = 8.87, Q × f = 107 000 GHz (at 14.8 GHz), and τf = ?16 ppm/°C. Spinel‐structured Mg(Al1?xGax)2O4 (= 0–1) solid solutions possessed low sintering temperatures, wide temperature regions (~100°C), and small negative τf values. These outstanding performance make Mg(Al, Ga)2O4 a promising candidate material for millimeter‐wave devices.  相似文献   

6.
The structure, microwave dielectric properties, and low‐temperature sintering behavior of acceptor/donor codoped Li2TiO3 ceramics [Li2Ti1?x(Al0.5Nb0.5)xO3, x = 0–0.3] were investigated systematically. The x‐ray diffraction confirmed that a single‐phase solid solution remained within 0 < x ≤ 0.2 and secondary phases started to appear as x > 0.2, accompanied by an order–disorder phase transition in the whole range. Scanning electron microscopy observation indicated that the complex substitution of Al3+ and Nb5+ produced a significant effect on the microstructural morphology. Both microcrack healing and grain growth contributed to the obviously enhanced Q×f values. By comparison, the decrease of εr and τf values was ascribed to the ionic polarizability and the cell volume, respectively. Excellent microwave dielectric properties of εr ~ 21.2, Q×f ~ 181 800 GHz and τf  ~ 12.8 ppm/°C were achieved in the x = 0.15 sample when sintered at 1150°C. After 1.5 mol% BaCu(B2O5) additive was introduced, it could be well sintered at 950°C and exhibited good microwave dielectric properties of εr ~ 20.4, Q×f ~ 53 290 GHz and τf ~ 3.6 ppm/°C as well. The cofiring test of the low‐sintering sample with Ag powder proved its good chemical stability during high temperature, which enables it to be a promising middle‐permittivity candidate material for the applications of low‐temperature cofired ceramics.  相似文献   

7.
Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics were prepared by the conventional solid-state reaction method. The phase composition, sintering characteristics, microstructure and dielectric properties of Ti4+ replacement by Nb5+ in the formed solid solution Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics were systematically studied. The structural variations and influence of Nb5+ doping in Mg(Ti1-xNbx)O3 were also systematically investigated by X-ray diffraction and Raman spectroscopy, respectively. X-ray diffraction and its Rietveld refinement results confirmed that Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics crystallised into an ilmenite-type with R-3 (148) space group. The replacement of the low valence Ti4+ by the high valence Nb5+ can improve the dielectric properties of Mg(Ti1-xNbx)O3 (x = 0–0.09). This paper also studied the different sintering temperatures for Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics. The obtained results proved that 1350 °C is the best sintering temperature. The permittivity and Q × f initially increased and then decreased mainly due to the effects of porosity caused by the sintering temperature and the doping amount of Nb2O5, respectively. Furthermore, the increased Q × f is correlated to the increase in Ti–O bond strength as confirmed by Raman spectroscopy, and the electrons generated by the oxygen vacancies will be compensated by Nb5+ to a certain extent to suppress Ti4+ to Ti3+, which was confirmed by XPS. The increase in τf from ?47 ppm/°C to ?40.1 ppm/°C is due to the increment in cell polarisability. Another reason for the increased τf is the reduction in the distortion degree of the [TiO6] octahedral, which was also confirmed by Raman spectroscopy. Mg(Ti0.95Nb0.05)O3 ceramics sintered at 1350 °C for 2 h possessed excellent microwave dielectric properties of εr = 18.12, Q × f = 163618 GHz and τf = ?40.1 ppm/°C.  相似文献   

8.
《Ceramics International》2022,48(10):14323-14328
Novel Li1.0Nb0.6Ti0.5O3: Tb3+ ceramics with favorable luminescent and dielectric properties were prepared by solid-state reaction (SSR) method. The X-ray diffraction (XRD) results indicated that the Tb3+ ions were effectively dissolved into the “M-phase” matrix synthesized at 1000–1100°C. The ceramic with a dense microstructure could be obtained at 1050°C. The Li1.0Nb0.6Ti0.5O3: Tb3+ ceramics emitted green light at 550 nm and relatively strong red light at 660 nm under the excitation of 440 nm, which were located in the orange-red light region shown in the chromaticity diagram. The color coordinates were (0.5574, 0.4417) for the Li1.0Nb0.6Ti0.5O3: 2wt% Tb3+ ceramic sintered at 1050°C. The quantum efficiency of Li1.0Nb0.6Ti0.5O3: 2wt%Tb3+ ceramic was 19%, which was much higher than that of 9.6% for commercial red Y2O3: Eu3+ phosphors. Furthermore, for Li1.0Nb0.6Ti0.5O3: 2wt%Tb3+ ceramic synthesized at 1050°C, the ideal dielectric properties with εr of 66.263 and Q*f of 5582 GHz were obtained, which might be used as a potentially multifunctional ceramic applied in the fields of LED packaging to improve the lack of red light for blue LEDs combined with yellow phosphors.  相似文献   

9.
Structural evolution and microwave dielectric properties of LiNb0.6(Ti1-x[Co1/3Nb2/3]x)0.5O3 (.05≤x≤.2) ceramics have been studied in this paper. Although the doped compositions maintain the M-phase solid solutions, compositional fluctuation due to nonuniform dispersion of minor dopants could be observed as x < .05, and trace amount of Li2TiO3-based solid solution (Li2TiO3ss) secondary phase presents in the x > .05 compositions. The microwave dielectric properties could be remarkably improved by the doping of (Co1/2Nb1/2)4+ in comparison to the undoped counterpart. Optimized microwave dielectric properties with Q × = ∼6500 GHz, εr = ∼74 and τ= +8.2 ppm/°C could be obtained at x = .10 after sintering at 1050°C/2 h. The sintering temperature could be further reduced to 900°C/2 h by adding .2 wt% B2O3 without affecting significantly its microwave dielectric properties: εr = 73, Q × = 6000 GHz, τ= +8.5 ppm/°C. The LiNb0.6(Ti1-x[Co1/3Nb2/3]x)0.5O3 ceramics obtained in this case exhibit large dielectric permittivity coupled with much improved Q × f values, near zero τf, and low sintering temperature simultaneously, which makes it a promising high-k microwave dielectric material for low temperature cofired ceramic applications.  相似文献   

10.
Effects of postdensification annealing upon microstructures and microwave dielectric characteristics in Ba((Co0.6?x/2Zn0.4?x/2Mgx)1/3Nb2/3)O3 (x = 0, 0.1, 0.2, and 0.3) complex perovskite ceramics have been investigated. Long‐time annealing at temperatures below the order–disorder transition temperature enhances the cation ordering degree and promotes the ordering domain growth. The most significant improvement of Qf value is obtained together with the suppressed temperature coefficient of resonant frequency in the samples annealed at 1400°C for 12 h, while the dielectric constant decreases slightly. The Qf value of ceramics annealed at 1400°C mainly attributes to the enhanced cation ordering degree, because their low‐energy domain boundaries are not detrimental to the Qf value. As the annealing temperature increases close to the transition temperature, coarse ordering domains with high‐energy boundaries are formed, and then the Qf value steadily decreases because of the inferior domain structure, even the cation ordering degree increases. The microwave dielectric characteristics of Ba((Co0.6?x/2Zn0.4?x/2Mgx)1/3Nb2/3)O3 ceramics are affected by the common function of ordering degree and domain structure. The best combination of microwave dielectric characteristics is obtained in the composition of x = 0.3 after annealing at 1400°C for 12 h: εr = 33.2, Qf = 117 200 GHz, and τf = 8.6 ppm/°C.  相似文献   

11.
Ceramics in the system 0.45Ba0.8Ca0.2TiO3–(0.55?x)Bi(Mg0.5Ti0.5)O3xNaNbO3, x = 0–0.02 were fabricated by a conventional solid‐state reaction route. X‐ray powder diffraction indicated cubic or pseudocubic symmetry for all samples. The parent 0.45Ba0.8Ca0.2TiO3–0.55Bi(Mg0.5Ti0.5)O3 composition is a relaxor dielectric with a near‐stable temperature coefficient of relative permittivity, εr = 950 ± 10% across the temperature range 80°C–600°C. Incorporation of NaNbO3 at x = 0.2 extends the lower working temperature to ≤25°C, with εr = 575% ± 15% from temperatures ≤25°C to >400°C, and tan δ < 0.025 from 25°C to 400°C. Values of dc resistivity ranged from ~109 Ω·m at 250°C to ~106 Ω·m at 500°C. The properties suggest that this material may be of interest for high‐temperature capacitor applications.  相似文献   

12.
Nb-doped and Y-deficient yttrium aluminum garnet ceramics were designed and synthesized using the solid-state reaction method according to the chemical equation Y3?xAl5NbxO12+x (0 ≤ x ≤ 0.16). The phase composition, sintering behavior, microstructure, and microwave dielectric properties were investigated as functions of the composition and sintering temperature. A single-phase solid solution of yttrium aluminum garnet structure formation was observed in the range of 0 ≤ x ≤ 0.1. Further increments in x prompted the precipitation of the YNbO4 secondary phase at the grain boundary of Y3Al5O12. The complexity of the phase composition degrades the micromorphology and dielectric properties of the ceramics to varying degrees. Transmission electron microscopy results show that the lattice exhibits additional symmetry, which is closely related to the ultrahigh Q×f values of the ceramics. Effectively improving the sintering behaviour and suppressing the secondary phase by simultaneously doping with Nb5+ and reducing the yttrium stoichiometry. Finally, excellent microwave dielectric properties of εr ~ 10.99, Q×f ~ 280,387 GHz (13.5 GHz), and τf ~ ? 34.7 ppm/°C can be obtained in x = 0.1 (Y2.9Al5Nb0.1O12.1) sintered at 1700 °C for 6 h.  相似文献   

13.
Novel high quality factor microwave dielectric ceramics (1?x)ZrTiO4?x(Mg1/3Nb2/3)TiO4 (0.325≤x≤0.4) and (ZrTi)1?y(Mg1/3Nb2/3)yO4 (0.2≤y≤0.5) with the addition of 0.5 wt% MnCO3 in the (Mg1/3Nb2/3)O2–ZrO2–TiO2 ternary system were prepared, using solid‐state reaction method. The relationship between the structure and microwave dielectric properties of the ceramics was studied. The XRD patterns of the sintered samples reveal the main phase belonged to α‐PbO2‐type structure. Raman spectroscopy and infrared reflectivity (IR) spectra were employed to evaluate phonon modes of ceramics. The 0.65ZrTiO4?0.35(Mg1/3Nb2/3)TiO4?0.5 wt% MnCO3 ceramic can be well densified at 1240°C for 2 hours and exhibits good microwave dielectric properties with a relative permittivity (εr) of 42.5, a quality factor (Q×f) value of 43 520 GHz (at 5.9 Ghz) and temperature coefficient of resonant frequency (τf) value of ?5ppm/°C. Furthermore, the (ZrTi)0.7(Mg1/3Nb2/3)0.3O4?0.5 wt% MnCO3 ceramic sintered at 1260°C for 2 hours possesses a εr of 31.8, a Q×f value of 35 640 GHz (at 6.3 GHz) and a near zero τf value of ?5.9 ppm/°C. The results demonstrated that the (Mg1/3Nb2/3)O2–ZrO2–TiO2 ternary system with excellent properties was a promising material for microwave electronic device applications.  相似文献   

14.
Highly transparent (Y0.95?xGdxEu0.05)2O3 (= 0.15–0.55) ceramics have been fabricated by vacuum sintering at the relatively low temperature of 1700°C for 4 h with the in‐line transmittances of 73.6%–79.5% at the Eu3+ emission wavelength of 613 nm (~91.9%–99.3% of the theoretical transmittance of Y1.34Gd0.6Eu0.06O3 single crystal), whereas the = 0.65 ceramic undergoes a phase transformation at 1650°C and has a transparency of 53.4% at the lower sintering temperature of 1625°C. The effects of Gd3+ substitution for Y3+ on the particle characteristics, sintering kinetics, and optical performances of the materials were systematically studied. The results show that (1) calcining the layered rare‐earth hydroxide precursors of the ternary Y–Gd–Eu system yielded rounded oxide particles with greatly reduced hard agglomeration and the particle/crystallite size slightly decreases along with increasing Gd3+ incorporation; (2) in the temperature range 1100°C–1480°C, the sintering kinetics of (Y0.95?xGdxEu0.05)2O3 is mainly controlled by grain‐boundary diffusion with similar activation energies of ~230 kJ/mol; (3) Gd3+ addition promotes grain growth and densification in the temperature range 1100°C–1400°C; (4) the bandgap energies of the (Y0.95?xGdxEu0.05)2O3 ceramics generally decrease with increasing x; however, they are much lower than those of the oxide powders; (5) both the oxide powders and the transparent ceramics exhibit the typical red emission of Eu3+ at ~613 nm (the 5D07F2 transition) under charge transfer (CT) excitation. Gd3+ incorporation enhances the photoluminescence and shortens the fluorescence lifetime of Eu3+.  相似文献   

15.
In the (Bi1 − xCex)VO4 (0 ≤ x ≤ 1) system, we found that the (Bi1 − xCex)VO4 (0 ≤ x ≤ 0.1) belongs to the monoclinic scheelite phase and the (Bi1 − xCex)VO4 (0.7 ≤ x ≤ 1) belongs to the tetragonal zircon phase, while the (Bi1 − xCex)VO4 (0.1 < x < 0.7) belongs to the mixed phases of both monoclinic scheelite and tetragonal zircon structure. Interestingly, two components with near-zero temperature coefficient of resonant frequency (TCF) appeared in this system. In our previous work, a near-zero TCF of ~+15 ppm/°C was obtained in a (Bi0.75Ce0.25)VO4 ceramic with a permittivity (εr) of ~47.9 and a Qf (Q = quality factor = 1/dielectric loss; f = resonant frequency) value of ~18 000 GHz (at 7.6 GHz). Furthermore, in the present work, another temperature-stable microwave dielectric ceramic was obtained in (Bi0.05Ce0.95)VO4 composition sintered at 950°C and exhibits good microwave dielectric properties with a εr of ~11.9, a Qf of ~22 360 GHz (at 10.6 GHz), and a near-zero TCF of ~+6.6 ppm/°C. The results indicate that this system might be an interesting candidate for microwave device applications.  相似文献   

16.
The crystal structure, microstructure, and microwave dielectric properties of forsterite‐based (Mg1–xNix)2SiO4 (= 0.02–0.20) ceramics were systematically investigated. All samples present a single forsterite phase of an orthorhombic structure with a space group Pbnm except for a little MgSiO3 secondary phase as x > 0.08. Lattice parameters in all axes decrease linearly with increasing Ni content due to the smaller ionic radius of Ni2+ compared to Mg2+. The substitution of an appropriate amount of Ni2+ could greatly improve the sintering behavior and produce a uniform and closely packed microstructure of the Mg2SiO4 ceramics such that a superior × f value (152 300 GHz) can be achieved as = 0.05. The τf value was found to increase with increasing A‐site ionic bond valences. In addition, various additives were used as sintering aids to lower the sintering temperature from 1500°C to the middle sintering temperature range. Excellent microwave dielectric properties of εr~6.9, × f~99800 GHz and τf~?50 ppm/°C can be obtained for 12 wt% Li2CO3‐V2O5‐doped (Mg0.95Ni0.05)2SiO4 ceramics sintered at 1150°C for 4 h.  相似文献   

17.
K0.5(Nd1?xBix)0.5MoO4 (0.2 ≤ x ≤ 0.7) ceramics were prepared via the solid‐state reaction method. All ceramics densified below 720°C with a uniform microstructure. As x increased from 0.2 to 0.7, relative permittivity (?r) increased from 13.6 to 26.2 commensurate with an increase in temperature coefficient of resonant frequency (TCF) from – 31 ppm/°C to + 60 ppm/°C and a decrease in Qf value (= quality factor; = resonant frequency) from 23 400 to 8620 GHz. Optimum TCF was obtained for x = 0.3 (?15 ppm/°C) and 0.4 (+4 ppm/°C) sintered at 660 and 620°C with ?r ~15.4, Qf ~19 650 GHz, and ?r ~17.3, Qf ~13 050 GHz, respectively. Ceramics in this novel solid solution are a candidate for ultra low temperature co‐fired ceramic (ULTCC) technology.  相似文献   

18.
Effects of Mg substitution on order/disorder transition, microstructure, and microwave dielectric characteristics of Ba((Co0.6Zn0.4)1/3Nb2/3)O3 complex perovskite ceramics have been investigated. The ordered complex perovskite solid solutions are obtained in Ba((Co0.6?x/2Zn0.4?x/2Mgx)1/3Nb2/3)O3 ceramics (x = 0, 0.1, 0.2, and 0.3), and the ordering degree in the as‐sintered dense ceramics increases with increasing Mg‐substitution amount. The significantly improved Qf value is obtained in the present ceramics with increasing x, whereas the dielectric constant decreases slightly together with some increase of temperature coefficient of resonant frequency. The best combination of microwave dielectric characteristics is obtained in the composition of x = 0.3: εr = 33.7, Qf = 93 800 GHz, and τf = 9.6 ppm/°C. In the Mg‐substituted compositions, clear domain boundaries are obtained and the domain size increases as x increases, the highest Qf value is obtained when the domain size is about 40–60 nm in the ceramics with x = 0.3. The increased ordering degree and the fine ordering domain structure are considered to primarily contribute to the significant increase of Qf value in the Mg‐substituted Ba((Co0.6Zn0.4)1/3Nb2/3)O3 complex perovskite ceramics.  相似文献   

19.
Srn+1TinO3n+1 (n=1, 2) ceramics with tetragonal Ruddlesden–Popper structure were prepared via a standard solid‐state reaction process, and their microstructures and microwave dielectric properties were investigated systematically. The phase composition, grain morphology, and densification behavior were explored using X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Outstanding microwave dielectric properties were achieved in the present ceramics: εr=42, × f=145 200 GHz, τf=130 ppm/°C for Sr2TiO4, and εr=63, × f=84 000 GHz, τf=293 ppm/°C for Sr3Ti2O7, respectively. The present ceramics might be expected as excellent candidates for next‐generation medium‐permittivity microwave dielectric ceramics after the further optimization of τf value.  相似文献   

20.
(3-Aminopropyl)triethoxysilane treated La(2−x)/3Na0.06TiO3 (x = 0.06) (LNT) microparticles filled polyetheretherketone (PEEK) composites were prepared using hot pressing process. The effects of variation of LNT ceramic filling fraction on dielectric properties, water absorption, thermal stability and mechanical strength were investigated. All composites demonstrate low water absorption (less than 0.4%) when the ceramic filling fraction is lower than 0.6Vf. The obtained composites exhibited dielectric permittivities varying from ~4 to ~22 as the ceramic fillers increased from 0.1 to 0.8Vf and low losses (~10−4 @1 MHz, 3~5 × 10−3 at the frequencies of microwave (10 GHz) and millimeter wave (29-50 GHz), respectively). The mechanical strength, dimensional and dielectric thermal stability of the composite are remarkably improved by the addition of LNT ceramic fillers. A composite with near zero temperature coefficients of dielectric permittivity or resonant frequency and flexural strength of ~140 MPa could be obtained. The out-of-plane coefficient of thermal expansion (CTE) could be reduced to ~20 ppm/°C as the ceramic filler loading reached 0.7Vf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号