首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the conventional geopolymer synthesis of ternary reactants system of silicate anions [Na2O·2SiO2], metakaolin [Al2O3·2SiO2] and aqueous alkali [Na2O], the SiO2/Al2O3 molar ratio can only be varied from ∼2 to 8. For geopolymerisation to occur, the minimum mole percentage of metakaolin reactant is about 25% and the maximum mole percentage of Na2O content is about 30%. As the reduction of metakaolin and increase of alkali content is limited, the total conversion of metakaolin into polymeric material is uncertain. The identification of the presence or absence of metakaolin in the cured geopolymer product is not possible in this synthesis of a ternary reactant system even by 29Si NMR, as the signal due to metakaolin is indistinguishable from a broad 29Si NMR peak consisting of many resonance lines of polymer network of cross-linked Si/Al tetrahedra.With our modified synthesis method employing colloidal SiO2 as an additional component, the metakaolin content is decreased while keeping an optimum amount of Na2O, thereby increasing the compositional SiO2/Al2O3 molar ratio. In this case, the signals related to Al-substituted SiO4 tetrahedra are reduced, indicating the reduction of Al-substituted SiO4 tetrahedra in the polymer network, resulting in better-resolved 29Si NMR lines. The 29Si NMR signal related to metakaolin is then distinguishable in the spectra of cured products by observing a series of samples with 11, 7, 5 and 3 mol% of metakaolin reactant. 29Si NMR signal related to metakaolin was only absent in the spectra of cured product when metakaolin reactant content is ≤5 mol%; that is, the compositional SiO2/Al2O3 molar ratio is ≥20.  相似文献   

2.
《Ceramics International》2016,42(9):10908-10912
Pure chemosynthetic Al2O3–2SiO2 powders fabricated by a sol–gel method exhibit high phosphoric acid-activated properties and high compressive strengths. The phosphoric acid-activated properties could be characterized by compressive strength. The phase structure evolution of synthetic powders and the resulting geopolymers were investigated by DTA-TG, XRD, FTIR and MAS NMR analysis. These results show that the phosphoric acid-activation region of the synthetic powders was in the range of 200–800 °C, which was much lower than the temperature at which kaolinite was converted into metakaolinite. 31P MAS NMR analysis revealed that [PO4] tetrahedra were part of the geopolymer structure.  相似文献   

3.
In this study, the effect of CaO and BaO substitution on the viscosity and structure of CaO‐BaO‐SiO2‐MgO‐Al2O3 slags was investigated. The results showed that the viscosity increased with an increase in the BaO substitution concentration, which was correlated to an increase in the degree of polymerization (DOP) of the slag structural units as the activation energy increased from 207.9 to 263.8 kJ/mol for viscous flow. Deconvolution and area integration of the Raman spectrum of the slag revealed that the ratio of Q3/Q2 (Qi, i is the number of O0 in a [SiO4]‐tetrahedral unit) increased and NBO/Si (nonbridging oxygen per unit silicon atom) decreased with higher BaO content. It was also observed from the 27Al magic angles pinning nuclear magnetic resonance (27Al MAS‐NMR) spectrum that the relative proportion of AlIV increased, while that of AlV decreased because of the decrease in the percentage of nonbridging oxygen (O?), indicating the polymerization of the slag. O1s X‐ray photoelectron spectroscopy (XPS) was also carried out to semi‐quantitatively analyze the various types of oxygen anions present in the slag. The XPS results correlated well with the results obtained from the analysis of the Raman and 27Al MAS‐NMR spectra of the slags and its viscous behavior.  相似文献   

4.
The incorporation of aluminum in the calcium–silicate–hydrate (C–S–H) phases formed by hydration of three different white Portland cements has been investigated by 29Si MAS NMR. The principal difference between the three cements is their bulk Al2O3 contents and quantities of alkali (Na+ and K+) ions. 29Si MAS NMR allows indirect detection of tetrahedral Al incorporated in the silicate chains of the C–S–H structure by the resonance from Q2(1Al) sites. Analysis of the relative 29Si NMR intensities for this site, following the hydration for the three cements from 0.5 d to 30 weeks, clearly reveals that the alkali ions promote the incorporation of Al in the bridging sites of the dreierketten structure of SiO4 tetrahedra in the C–S–H phase. The increased incorporation of Al in the C–S–H phase with increasing alkali content in the anhydrous cement is in accord with a proposed substitution mechanism where the charge deficit, obtained by the replacement of Si4+ by Al3+ ions in the bridging sites, is balanced by adsorption/binding of alkali ions in the interlayer region most likely in the near vicinity of the AlO4 tetrahedra. This result is further supported by similar 29Si MAS NMR experiments performed for the white Portland cements hydrated in 0.30M NaOH and NaAlO2 solutions.  相似文献   

5.
The structural development of a calcium (sodium) aluminosilicate hydrate (C–(N‐)A–S–H) gel system, obtained through the reaction of sodium metasilicate and ground granulated blast furnace slag, is assessed by high‐resolution 29Si and 27Al MAS NMR spectroscopy during the first 2 yr after mixing. The cements formed primarily consist of C–(N‐)A–S–H gels, with hydrotalcite and disordered alkali aluminosilicate gels also identified in the solid product assemblages. Deconvolution of the 27Al MAS NMR spectra enables the identification of three distinct tetrahedral Al sites, consistent with the 29Si MAS NMR data, where Q3(1Al), Q4(3Al), and Q4(4Al) silicate sites are identified. These results suggest significant levels of cross‐linking in the C–(N‐)A–S–H gel and the presence of an additional highly polymerized aluminosilicate product. The mean chain length, extent of cross‐linking, and Al/Si ratio of the C–(N‐)A–S–H gel decrease slightly over time. The de‐cross‐linking effect is explained by the key role of Al in mixed cross‐linked/non‐cross‐linked C–(N‐)A–S–H gels, because the cross‐linked components have much lower Al‐binding capacities than the noncross‐linked components. These results show that the aluminosilicate chain lengths and chemical compositions of the fundamental structural components in C–(N‐)A–S–H gels vary in a way that is not immediately evident from the overall bulk chemistry.  相似文献   

6.
The nanostructural evolution during formation of geopolymers and its correlation with setting have not been well understood. In this study, penetration resistance and ultrasonic wave reflection tests were conducted to measure setting, and solid‐state 27Al NMR and liquid‐state 29Si NMR were used to examine nanostructural changes in a metakaolin geopolymer as a function of time. Aluminum was released rapidly during the first 10 hour after mixing and immediately condensed with silicate species in solution to form larger sized aluminosilicate oligomers, which then condensed to form large structural units. Our evidence suggests these units form near metakaolin particle surface. Smaller sized silicate ions in the sol phase then attach to these units to form a gel with a more interconnected network structure. The initial stage of this attaching process was seen to be associated with set, which in this mixture occurred at 15 hour.  相似文献   

7.
The composition and structure of the calcium‐silicate‐hydrate (C–S–H) phases formed by hydration of white portland cement–metakaolin (MK) blends have been investigated using 27Al and 29Si MAS NMR. This includes blends with 0, 5, 10, 15, 20, 25, 30 wt% MK, following their hydration from 1 d to 1 yr. 29Si MAS NMR reveals that the average Al/Si ratio for the C–S–H phases, formed by hydration of the portland cement–MK blends, increases almost linearly with the MK content but is invariant with the hydration time for a given MK content. Correspondingly, the average aluminosilicate chain lengths of the C–S–H increase with increasing MK content, reflecting the formation of a C–S–H with a lower Ca/Si ratio. The increase in Al/Si ratio with increasing MK content is supported by 27Al MAS NMR which also allows detection of strätlingite and fivefold coordinated aluminum, assigned to AlO5 sites in the interlayer of the C–S–H structure. Strätlingite is observed after prolonged hydration for MK substitution levels above 10 wt% MK. This is at a somewhat lower replacement level than expected from thermodynamic considerations which predict the formation of strätlingite for MK contents above 15 wt% after prolonged hydration for the actual portland cement–MK blends. The increase in fivefold coordinated Al with increasing MK content suggests that these sites may contribute to the charge balance of the charge deficit associated with the incorporation of Al3+ ions in the silicate chains of the C–S–H structure.  相似文献   

8.
SiC-based refractory paints prepared with alkali aluminosilicate binders   总被引:1,自引:0,他引:1  
Refractory paints based on silicon carbide (SiC) were developed using inorganic alkali aluminosilicates binders. In order to optimize the binders, different raw materials have been tested for their preparations (calcined kaolin, commercial metakaolin, α-alumina and fumed silica synthetic powders). The alkali activator was an aqueous solution of KOH/K2SiO3. The SiO2:Al2O3 molar ratio was equal to 4 and the SiO2:K2O molar ratio was 2. Calcined kaolin and metakaolin in alkaline conditions dissolved and re-precipitated to form geopolymer resins acting as a glue for the un-reacted Al-Si materials and SiC (90 wt.%). Binders based on α-alumina and fumed silica behaved as water glass. Binders and SiC paints were tested and characterized in inert and oxidative atmospheres up to 1300 °C. The oxidation of the SiC paints was 50% lower than that of pure SiC, evidencing a key role of the alkali aluminosilicate binders during the thermal treatments.  相似文献   

9.
To design suitable mold fluxes for the casting of high‐Al steels, the structure of mold fluxes based on CaO–SiO2, CaO–SiO2–Al2O3, and CaO–Al2O3 was examined by Raman spectroscopy and magic‐angle spinning nuclear magnetic resonance. The results showed that Si atoms are replaced by Al atoms as the network formers with the increase in Al2O3 in the mold fluxes. This converts the silicate slags (CaO–SiO2 mold fluxes) into aluminosilicates slags (CaO–SiO2–Al2O3 or CaO–Al2O3 mold fluxes). The F? ions in the mold flux containing Al2O3 are classified into three categories, according to function: Bridging F's, Nonbridging F's, and Free‐F's. The Al3+ ion holds three distinct coordination environments: IVAl, VAl, and VIAl. The addition of F affects the coordination environment of Al3+ to form AlO3F and AlO2F2 that accommodate the network structure of slags. The network structure in the CaO–SiO2 mold fluxes is mainly connected through Si–O–Si linkage. However, the network structure of the mold fluxes containing elevated content of Al2O3 is mainly connected through Si–O–Si, Al–O–Al, Al–O–Si, and Al–F–Al linkages. Hence, the structural characteristics of high‐Al steels mold fluxes must be considered during the designing step of the mold fluxes.  相似文献   

10.
The model developed by Makishima and Mackenzie (M–M) may yield reasonable estimates for the E‐modulus of a range of glasses. In the M–M model the bonding enthalpy and packing densities present in the compounds that form the glass are taken as input for the calculation. This study shows that a more accurate estimate can be obtained by incorporating in the model structural information from MAS‐NMR data. Specifically, we have determined by means of the impulse excitation technique (IET) the E‐modulus for ionomer glasses with composition 4.5SiO2–3Al2O3–1.5P2O5–3MO–2MF2, where M denotes the alkaline earth metal (M = Mg, Ca, Sr, or Ba). The MAS‐NMR structural analysis shows that substitution of calcium by barium or strontium results in a disrupted network, whereas magnesium leads to a more packed network. In this study we will show how a higher coordination state of the aluminum as determined by 27Al MAS‐NMR can be taken into account in the model. This leads to rather small corrections of the estimates for these particular glasses. In contrast, the 19F MAS‐NMR study shows the presence of Al–F–M(n) or Al–F and Si–F–M(n) types of environment in the glass network. Al–F and Si–F bonds are not accounted for in the E‐modulus estimate by the M–M model. We will show how by incorporating the new bonding of F with Al and Si a significantly improved estimate of the E‐modulus is obtained compared with the original model.  相似文献   

11.
The hydrothermal conversion of FAU zeolite into aluminous MTN zeolite is described here. In the presence of both benzyltrimethylammonium hydroxide (BTMAOH) and sodium chloride (NaCl) the highly crystalline and pure MTN zeolites with Si/Al ratios of 21-23 could be obtained from the hydrothermal conversion of FAU zeolite. Based on powder XRD refinement and 13C CP/MAS NMR spectra, BTMA+ ions were not present in cages of the obtained zeolites, but TMA+ ions existed instead. It means that BTMAOH underwent degradation during the conversion. Moreover, the effects of Si/Al ratio of starting FAU zeolite, synthesis parameters (BTMAOH/SiO2 and H2O/SiO2 ratios) and the addition of alkali metal chlorides on the hydrothermal conversion of FAU zeolite into MTN zeolite are discussed. As compared to amorphous SiO2/γ-Al2O3, which produced impurity, the hydrothermal conversion of FAU zeolite showed a fast crystallization rate and a high selectivity to MTN zeolite formation. These phenomena indicate that the assembly of locally ordered aluminosilicate species coming from the decomposition or dissolution of FAU zeolite should be taking part in the conversion process.  相似文献   

12.
The effect of alkaline‐earth ions on Na transport in aluminosilicate glasses was studied by measuring ionic conductivity for a systematic compositional series of Na2O–RO–Al2O3–SiO2 glasses (R=Mg, Ca, Sr, Ba). The Na transport in aluminosilicate glass could be affected by compositional changes in aluminum coordination and nonbridging oxygen as well as physical properties such as dielectric constant, shear modulus, and ionic packing factor. Through careful experimental designs and measurements, the main determinants among these parameters were identified. 27Al MAS‐NMR indicated that all aluminum species contained in these glasses are four‐coordinated. The activation energy for ion conductivity decreased with increasing aluminum content and decreasing ionic radii of the alkaline‐earth ion in the region where [Al] < [Na]. When the aluminum content exceeded the sodium content ([Al] > [Na]), the composition dependence of the activation energy depended on the specific alkaline earth. These results are explained based on variations in free volume and dielectric constant caused by structural changes around the AlO4 charge compensation sites. These structure changes occur in response to the smaller size and higher field strength of the alkaline‐earth ions, and are most prevalent in the compositions which require bridging of two AlO4 sites by the alkaline‐earth ion for charge compensation.  相似文献   

13.
Silicon carbide (SiC) ceramic powders were synthesized by carbothermal reduction in specific geopolymers containing carbon nanopowders. Geopolymers containing carbon and having a composition M2O·Al2O3·4.5SiO2·12H2O+18C, where M is an alkali metal cation (Na+, K+, and Cs+) were carbothermally reacted at 1400°C, 1500°C, and 1600°C, respectively, for 2 h under flowing argon. X‐ray diffraction and microstructural investigations by SEM/EDS and TEM were made. The geopolymers were gradually crystallized into SiC on heating above 1400°C and underwent significant weight loss. SiC was seen as the major phase resulting from Na‐based geopolymer heated to ≥1400°C, even though a minor amount of Al2O3 was also formed. However, phase pure SiC resulted with increasing temperature. While a slight increment of the Al2O3 amount was seen in potassium geopolymer, Al2O3 essentially replaced cesium geopolymer on heating to 1600°C. SEM revealed that SiC formation and a compositionally variable Al2O3 content depended on the alkaline composition. Sodium geopolymer produced high SiC conversion into fibrous and globular shapes ranging from ~5 μm to nanosize, as seen by X‐ray diffraction as well as SEM and TEM, respectively.  相似文献   

14.
Silica‐alumina (SiO2‐Al2O3)‐supported palladium catalysts prepared by adsorption of the tetrachloropalladate anion (PdCl42−) followed by calcination and reduction with either hexanol or hydrogen were studied for the aerobic oxidation of alcohols. The mean size of the Pd particles over the SiO2‐Al2O3 support was found to depend on the Si/Al ratio, and a decrease in the Si/Al ratio resulted in a decrease in the mean size of the Pd nanoparticles. By changing the Si/Al ratio, we obtained supported Pd nanoparticles with mean sizes ranging from 2.2 to 10 nm. The interaction between the Pd precursor and the support was proposed to play a key role in tuning the mean size of the Pd nanoparticles. The Pd/SiO2‐Al2O3 catalyst with an appropriate mean size of Pd particles could catalyze the aerobic oxidation of various alcohols to the corresponding carbonyl compounds, and this catalyst was particularly efficient for the solvent‐free conversion of benzyl alcohol. The intrinsic turnover frequency per surface Pd atom depended significantly on the mean size of Pd particles and showed a maximum at a medium mean size (3.6–4.3 nm), revealing that the aerobic oxidation of benzyl alcohol catalyzed by the supported Pd nanoparticles was structure‐sensitive.  相似文献   

15.
《Ceramics International》2017,43(17):14545-14551
This review summarizes different types of industrial wastes such as biomass ash, red mud, recycled glass and heavy metals waste, in their application for geopolymer production. These wastes, which are currently abundant and urgent to dispose of, cannot be used alone in the geopolymer process because they do not provide a suitable SiO2/Al2O3 molar ratio for this technology. For this reason, these by-products are commonly used in addition to other aluminosilicate sources such as fly ash or metakaolin. Important parameters which affect the properties and performance of fly ash based geopolymers with addition of a variety of wastes are discussed based on a comprehensive literature review.  相似文献   

16.
Geopolymers are inorganic binders obtained by alkali activation of aluminosilicates. While the structure of geopolymers is now well understood, the details of the geopolymerisation reaction and their impact on the rheology of the paste remain uncertain. In this work, we follow the elastic properties of a paste made with metakaolin and sodium silicate solution. After the first sharp increase of elastic modulus occurring a few hundred of seconds after mixing and related to the heterogeneous formation of an alumina–silicate gel with a molar ratio Si/Al < 4 located at the grains boundaries, we focus on the progressive increase in elastic modulus on a period of few hours during the setting of the geopolymer. In this study, we combine the study of rheological properties of the paste with 23Na, 27Al and 29Si static NMR measurement in order to better understand the origin of this second increase in elastic modulus. Our results show that, after a few hours, Al and Na evolution in the liquid phase are concomitant. This suggests the precipitation of an aluminosilicate phase where Al is in tetrahedral position and Na compensates the charge. Furthermore, Si speciation confirms this result and allows us to identify the precipitation of a product, which has a chemical composition close to the final composition of geopolymer. This study provides strong evidence for a heterogeneous formation of an aluminosilicate glass directly from the first gel and the silicate solution without the need for a reorganisation of Gel 1 into Gel 2.  相似文献   

17.
A drastic change in the environment of Si atoms in SAPO-37 after heating at 1173 K is seen in the29Si MAS NMR spectrum. This suggests a modification of the location of Si, Al and P atoms. Three main phases would coexist in large amounts in the faujasite structure, the SAPO-37 originating phase, pure SiO4 islands and an aluminosilicate phase comparable to Si-Al faujasite.  相似文献   

18.
A new green chemical route was designed in this paper for the synthesis of high-silica EU-1 molecular sieve in TEAOH–SiO2–Al2O3–HMBr2–H2O system in which tetraethylammonium hydroxide (TEAOH) substituted for sodium hydroxide (NaOH) as an alkali source. The physicochemical properties of the synthesized samples characterized by such means as X-ray powder diffraction (XRD), electrophoresis apparatus, precise pH meter, scanning electron microscope, Fourier infrared spectrometer (FT-IR), thermo gravimetric analyzer (TG) and temperature programmed desorption (NH3-TPD). The research results showed that the SiO2/Al2O3 ratio of EU-1 molecular sieve could reach 706 with TEAOH as an alkali source. The SiO2/Al2O3 ratio of the product was improved greatly to 1046 with the template agent increasing. The new synthetic route has also significantly expanded the synthetic phase region. The absolute value of zeta potential of the TEAOH sol system was obviously higher than that of the NaOH sol system, indicating the thermodynamic stability of the former sol system was higher and better for the synthesis of pure high-silica EU-1 molecular sieve. The FT-IR spectra and TG/DTG diagrams of products indicated that TEA+ occluded in the final products could balance electronegative framework. The amount of strong, weak and the total acidity reduced with the increase of SiO2/Al2O3 ratio. The catalytic results of methanol-to-hydrocarbon demonstrated that the molecular sieve prepared by the new method has better catalytic performance.  相似文献   

19.
Geopolymer setting is seen to be substantially accelerated by addition of calcium and the objective of this study was to determine the mechanism for this effect by examining metakaolin geopolymers with and without calcium. Solid‐state 27Al NMR tests were used to examine the dissolution extent both qualitatively and quantitatively. Solid‐state 29Si NMR tests were conducted to determine the amount and structure of each phase. Prior to the quantitative tests, chemical extractions were used to facilitate assignment of peaks in each spectrum. On addition of calcium, it was found that both the rate and the extent of metakaolin dissolution were enhanced. Accelerating dissolution increases the Al concentration in solution, thus reducing Si/Al available for geopolymer gel formation and further accelerating the gel formation to cause faster setting. Although C‐A‐S‐H was observed in the calcium mix, no evidence indicated that it is directly involved in setting.  相似文献   

20.
《Ceramics International》2022,48(18):25933-25939
In order to gain more insights into the influence of rare earth elements on the melt structure of SiO2–CaO–Al2O3–MgO glass ceramics, Raman and X-ray photoelectron spectroscopy techniques were used to study the influence of La2O3 on the Si–O/Al–O tetrahedron structure within SiO2–CaO–Al2O3–MgO–quenched glass samples in this study. Results showed that some Raman peak shapes at low frequencies (200–840 cm?1) changed significantly after the addition of La2O3, compared to the high frequency (840–1200 cm?1) region that corresponds to the [SiO4] structure, suggesting that the depolymerization of the low-frequency T–O–T (T=Si or Al) structure was more prevalent with La3+ addition. Besides, the depolymerization extent of the Si–O/Al–O tetrahedral network varied when the melt composition altered. Most notably, depolymerization is the most significant at a low CaO/SiO2 ratio (0.25) and a high Al2O3 content (8%). Meanwhile, La3+ can promote the transformation of Si–O–Si and Al–O–Al bonds to the Si–O–Al ones, thereby forming a complex ionic cluster network interwoven with Si–O and Al–O tetrahedrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号