首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkaline earth silicate (AES) fiber ceramic board was immersed in a novel coating slurry consisting of Al4SiC4 particles and silica-sol, forming a 500-μm coating layer on the AES fiber board. Linear shrinkage of the uncoated AES fiber board was over 3.0% after heating at 1100°C or higher for 8 hours, whereas the linear shrinkage of the AES fiber board with an Al4SiC4 coating was below 2.0%. The coating layer of Al4SiC4 changed to a hard shell structure consisting of cristobalite, alumina, and mullite after heating. When AES fiber board with an Al4SiC4 coating layer was heated at 1200°C for 8 hours, the compressive strength of the board reached 0.45 MPa, 2.5 times greater than that of the original uncoated board.  相似文献   

2.
The isothermal oxidation behavior of YAl3C3 in air has been investigated at 900−1300 °C for 20 h. At 900 and 1000 °C, the oxidation kinetic curves of YAl3C3 obey parabolic rate law. The oxide scales have a bilayer structure. The outer layer is composed of YAG and amorphous Al2O3, and the inner layer is a carbon-rich layer. The oxidation kinetic curves of YAl3C3 obey linear law above 1100 °C. The oxide scales have a monolayer structure composed of Al2O3 and YAG. The crystallization transformation of amorphous Al2O3 causes the oxidation kinetic curve changing from a parabolic to a straight line.  相似文献   

3.
Niobium aluminum carbide (Nb4AlC3), as a member of the MAX phases, can retain its stiffness and strength up to over 1400°C. However, its applications are limited due to its poor oxidation resistance at high temperatures. In this work, silicon pack cementation has been applied to improve the oxidation resistance of Nb4AlC3. After Si pack cementation at 1200°C for 6 h, a dense and uniform silicide coating which was mainly composed of NbSi2 and SiC and well bonded to the matrix was successfully formed on the surface of Nb4AlC3. The Si pack cemented Nb4AlC3 shows excellent oxidation resistance up to 1200°C due to the formation of protective Al2O3 layer. The oxidation kinetics of the cemented Nb4AlC3 obey parabolic law all the way to up to 1200°C, and the parabolic rate constants of cemented Nb4AlC3 are in the same order of magnitude as those of Ti3AlC2 in the temperature range 1000°C–1200°C. However, the oxidation of the cemented Nb4AlC3 was accelerated after oxidation at 1300°C for about 15 h due to the formation of NbAlO4.  相似文献   

4.
《Ceramics International》2022,48(9):12184-12192
In this study, WC-15 wt% Al2O3 composites were prepared using the vacuum hot-pressing sintering method. The high-temperature (600–800 °C) oxidation behaviour of WC-15 wt% Al2O3 composites was investigated and compared with that of WC-6wt.%Co cemented carbides. The results showed that the oxidation resistance of WC-15 wt% Al2O3 composites was better than that of WC-6wt.%Co cemented carbides at relatively high temperatures (700–800 °C). At 800 °C, an oxide layer was formed on the surface of WC-15 wt% Al2O3 composites, which included WO3 and Al2O3. The dispersion of alumina in the composites hindered the further diffusion of oxygen, thus improving the oxidation resistance. The Arrhenius activation energies of WC-15 wt% Al2O3 composites and WC-6wt.%Co cemented carbides were 110 ± 1 kJ/mol and 167 ± 2 kJ/mol at 600–800 °C, respectively.  相似文献   

5.
Si‐B‐C ceramics were prepared through reaction sintering, and the influence of Al2O3 addition on the high‐temperature (1100‐1300°C) oxidation behavior of the material under air atmosphere was studied. The erosion behavior and mechanism are determined from the measurement of weigh changes, microstructure observations, and characterization of the generated oxides on postexposure specimens. Results show that Al2O3 is enriched in the oxidized layer, inhibiting the volatilization of B2O3 and impeding the crystallization ability of oxide (cristobalite). Narrower erosion layer and less weigh change are observed with Al2O3. Low‐frequency Raman results reveals that with the increase in Al2O3, the bending vibrations of the BO4 units and B‐O‐B stretching of the metaborate ring relative intensity are enhanced. Furthermore, high‐frequency Raman results shows that the relative proportion of high‐dimensional vibration modes Q3 and Q4 which result in a higher viscosity of melt and a greater resistance of oxygen diffusion are positively correlated with Al2O3.  相似文献   

6.
《应用陶瓷进展》2013,112(5):288-293
Thermal stability of Ti3SiC2 was investigated at 1200–1400°C in hydrogen atmosphere for 3 hours. The hydrogenation mechanism was clarified by a combination of X-ray diffraction, scanning electron microscope, Raman spectroscopy and first principles calculation. At 1200°C, a dense and uniform TiSi2 layer formed on the sample surface, which originated from both the preferable lose of silicon from the Ti3SiC2 substrate and the dissociation of Ti3SiC2. As temperature increased to 1300°C, TiSi2 layer began to scale off and presented laminated Ti3SiC2 grains beneath this layer, which indicated preferential hydrogenation occurred along the basal planes. This phenomenon was ascribed to the fact that the introduction of H interstitial atom weakened the combination between titanium and silicon interface layer, which was confirmed by first principles calculations. In addition, the formation of TiSi2 owing to the dissociation of Ti3SiC2 caused the volume expansion after hydrogenation, resulting in that majority of TiSi2 layer spelled off at 1400°C.  相似文献   

7.
《Ceramics International》2023,49(19):31752-31762
The oxidation resistance of low carbon Al2O3–C refractories with the addition of SiCnw/Al2O3 composite powders and the enhancement mechanisms were investigated. The oxidation resistance was evaluated by oxidation index (O.I.) and oxidation rate constant (k). The enhancement mechanisms of SiCnw/Al2O3 on oxidation resistance were analyzed based on the phases and microstructures. The results showed that the SiCnw/Al2O3 can improve the oxidation resistance of Al2O3–C refractories, the O.I. and k of A6 (6 wt% SiCnw/Al2O3 addition) were 26.0% and 34.5% lower than those of reference sample A0, respectively. The oxidation resistance of refractories was improved in a range of 1000–1400 °C due to the introduction of SiCnw/Al2O3. The enhancement mechanisms can be explained that SiCnw is more susceptible to be oxidized due to its high specific surface area, which expanded the action temperature range of other antioxidants and itself. The mullite and dense protective layer generated during oxidation is also beneficial to impede the diffusion of O2.  相似文献   

8.
The oxidation behavior of SiC whiskers (SiCW) with a diameter size of 50–200 nm has been investigated at 600°C–1400°C in air. Experimental results reveal that SiCW exhibit a low oxidation rate below 1100°C while a significant larger oxidation rate after that. This can be attributed to the small diameter size of SiCW, which determines that it is hard to form a protective SiO2 layer thick enough to hamper the diffusion of oxygen effectively. Both nonisothermal and isothermal oxidation kinetics were studied and the apparent oxidation energy was calculated to further understand the oxidation behavior of the SiCW.  相似文献   

9.
Using spark plasma sintering, Ti3AlC2/W composites were prepared at 1300°C. They contained “core‐shell” microstructures in which a TixW1?x “shell” surrounded a W “core”, in a Ti3AlC2 matrix. The composite hardness increased with W addition, and the hardening effect is likely achieved by the TixW1?x interfacial layer providing strong bonding between Ti3AlC2 and W, and by the presence of hard W. Microstructural development during high‐temperature oxidation of Ti3AlC2/W composites involves α‐Al2O3 and rutile (TiO2) formation ≥1000°C and Al2TiO5 formation at ~1400°C while tungsten oxides appear to have volatilized above 800°C. Likely due to exaggerated, secondary grain growth of TiO2‐doped alumina and the effect of W addition, fine (<1 μm) Al2O3 grains formed dense, anisomorphic laths on Ti3AlC2/5 wt%W surfaces ≥1200°C and coarsened to large (>5 μm), dense, TiO2‐doped Al2O3 clusters on Ti3AlC2/10 wt%W surfaces ≥1400°C. W potentially affects the oxidation behavior of Ti3AlC2/W composites beneficially by causing formation of TixW1?x thus altering the defect structure of Ti3AlC2, resulting in Al having a higher activity and by changing the scale morphology by forming dense Al2O3 laths in a thinner oxide coating, and detrimentally through release of volatile tungsten oxides generating cavities in the oxide scale. For Ti3AlC2/5 wt%W oxidation, the former beneficial effects appear to dominate over the latter detrimental effect.  相似文献   

10.
Cr2AlC foams have been processed for the first time containing low (35 vol%), intermediate (53 vol%), and high (75 vol%) content of porosity and three ranges of pore size, 90‐180 μm, 180‐250 μm, and 250‐400 μm. Sacrificial template technique was used as the processing method, utilizing NH4HCO3 as a temporary pore former. Cr2AlC foams exhibited negligible oxidation up to 800°C and excellent response up to 1300°C due to the in‐situ formation of an outer thin continuous protective layer of α‐Al2O3. The in‐situ α‐Al2O3 protective layer covered seamlessly all the external surface of the pores, even when they present sharp angles and tight corners, reducing significantly the further oxidation of the foams. The compressive strength of the foams was 73 and 13 MPa for 53 vol% and 75 vol% porosity, respectively, which increased up to 128 and 24 MPa after their oxidation at 1200°C for 1 hour. The increase in the compressive strength after the oxidation was caused by the switch from inter‐ to transgranular fracture mode. According to the excellent high‐temperature response, heat exchangers and catalyst supports are the potential application of these foams.  相似文献   

11.
This work reports the oxidation and crack healing behavior of a fine‐grained (~2 μm) Cr2AlC MAX phase ceramic. The oxidation behavior was investigated in the temperature range 900°C–1200°C for times up to 100 h. The material showed a good oxidation resistance, owing to the formation of a dense and thin α‐Al2O3 layer. The microstructure, composition and thickness of the oxide scale were characterized. Its oxidative crack healing behavior as a function of temperature, healing time, and initial crack size was studied systematically. The material showed excellent healing behavior. The main crack healing mechanism is the filling of the crack by oxides well adhering to the crack faces. The crack geometry before and after healing was characterized by X‐ray tomography. Three‐point bend tests showed the dependence of strength recovery at 1100°C as a function of initial crack length and healing time.  相似文献   

12.
Dense Si2BC3N ceramics were prepared through SPS sintering the amorphous Si2BC3N and Al4SiC4 powders obtained from mechanical alloying. The phase compositions, microstructures, and mechanical properties, as well as the thermal shock resistance were investigated. In addition, evaluations of oxidation and the ablation resistance were also preceded. The results show that Al4SiC4 phase can be detected at 1200 and 1400?°C under pressureless sintering. However, Al4SiC4 can be decomposed to AlN and SiC phases under higher temperatures. As for the bulk Si2BC3N ceramics, the Al4SiC4 additive induce the development of turbostratic BN(C) plates and improve the relative density consequently. Besides, the Al4SiC4 plates are embedded in the matrix of ceramics. Therefore, the mechanical properties and thermal shock resistance are improved apparently with the addition of additive. Meanwhile, the additive containing composites have superior ablation resistance than the pristine Si2BC3N ceramics due to their higher relative density.  相似文献   

13.
A family of cuspidine-type rare-earth (RE) aluminates with the general formula Ln4Al2O9 (Ln= Y, Sm, Eu, Gd, Tb) was prepared for potential use as thermal-barrier coating (TBC) materials with appropriate properties. Various trivalent lanthanides were applied to tailor the properties of the oxides for use as ceramic top coat (TC) materials intended for high-temperature applications. Following various heat treatments, the X-ray diffraction (XRD) results obtained demonstrated that Eu4Al2O9 (EuAM) possessed the greatest structural stability of all the samples at 1200 and 1300?°C. Moreover, Y4Al2O9 (YAM) had a long lifetime at 1000?°C, and was stable at 1100?°C. At 1200?°C, Sm4Al2O9 (SmAM) and Gd4Al2O9 (GdAM) were more stable than Tb4Al2O9 (TbAM). However, at 300–1000?°C, the TbAM exhibited the highest thermal expansion coefficient (TEC) of all the samples. At 600?°C, the thermal diffusivity values of the five compositions were favourable, and were lower than that of yttria-stabilised zirconia (YSZ) oxides.  相似文献   

14.
Thermochemical interactions between Ca2Y8(SiO4)6O2 apatite, a potential environmental barrier coating (EBC) material, and a synthetic CMAS having the composition 23.3 CaO - 6.4 MgO - 3.1 Al2O3 - 62.5 SiO2 - 4.1 Na2O - 0.5 K2O - 0.04 Fe2O3 mole % were investigated. Pellets of apatite + CMAS powder and hot-pressed apatite disc-CMAS couples were annealed at 1200–1500 °C for 1–50 hours in air. Powder X-ray diffraction (XRD) was used to identify the phases present. Polished cross-sections of the heat treated pellets and diffusion couples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), high angle annular dark field (HAADF) imaging, selected area electron diffraction (SAED), and energy dispersive X-ray spectroscopy (EDS). Ca3Y2(Si3O9)2 cyclosilicate, apatite, and amorphous phases were present in the samples heat treated at 1200 and 1300 °C, whereas no cyclosilicate was detected in samples annealed at 1400 and 1500 °C. A distinct cyclosilicate layer was observed at the apatite-CMAS interface in the diffusion couples heat treated at 1200 and 1300 °C. However, at 1400 and 1500 °C, due to its much lower viscosity, CMAS quickly infiltrated the apatite substrate through pores and along the grain boundaries and no cyclosilicate was observed; the apatite grains dissolved in molten CMAS followed by re-precipitation of apatite needles within an amorphous phase on cooling.  相似文献   

15.
Using CaO, Y2O3, Al2O3, and SiO2 micron-powders as raw materials, CaO–Y2O3–Al2O3–SiO2 (CYAS) glass was prepared using water cooling method. The coefficient of thermal expansion (CTE) of CYAS glass was found to be 4.3 × 10?6/K, which was similar to that of SiCf/SiC composites. The glass transition temperature of CYAS glass was determined to be 723.1 °C. With the increase of temperature, CYAS glass powder exhibited crystallization and sintering behaviors. Below 1300 °C, yttrium disilicate, mullite and cristobalite crystals gradually precipitated out. However, above 1300 °C, the crystals started diminishing, eventually disappearing after heat treatment at 1400 °C. CYAS glass powder was used to join SiCf/SiC composites. The results showed that the joint gradually densified as brazing temperature increased, while the phase in the interlayer was consistent with that of glass powder heated at the same temperature. The holding time had little effect on phase composition of the joint, while longer holding time was more beneficial to the elimination of residual bubbles in the interlayer and promoted the infiltration of glass solder into SiCf/SiC composites. The joint brazed at 1400 °C/30 min was dense and defect-free with the highest shear strength of about 57.1 MPa.  相似文献   

16.
《Ceramics International》2022,48(15):21756-21762
Understanding the densification and grain growth processes is essential for preparing dense alumina fibers with nanograins. In this study, the alumina fibers were prepared via isothermal sintering at 1200, 1300, 1400, and 1500 °C for 1–30 min. The phase, microstructure, and density of the sintered fibers were investigated using XRD, SEM, and Archimedes methods. It was found that the phase transformation during the isothermal sintering enhances the densification of Al2O3 fibers in the initial stage, while the pores generated during the phase transformation retard the densification in the later period. The kinetics and mechanisms for the densification and grain growth of the fibers were discussed based on the sintering and grain growth models. It was revealed that the densification process of the fibers sintered at 1500 °C is dominated by the lattice diffusion mechanism, while the samples sintered at 1200–1400 °C are dominated by the grain boundary diffusion mechanism. The grain growth of the Al2O3 fibers sintered at 1200–1300 °C is governed by surface-diffusion-controlled pore drag, and that sintered at 1400 °C is dominated by lattice-diffusion-controlled pore drag.  相似文献   

17.
Al4SiC4 bulk ceramics were synthesized by reaction hot-pressing using Al, graphite powders and polycarbosilane (PCS) as starting materials. The present work confirmed that this process was an effective method for the preparation of Al4SiC4 ceramics having high relative density and well-developed plate-like grains. The mechanical, thermal properties and oxidation behaviors of the Al4SiC4 ceramics were also investigated. The flexural strength, fracture toughness (KIC) and Vickers hardness at room temperature were 297.1 ± 22 MPa, 3.98 ± 0.05 MPa m1/2, 10.6 ± 1.8 GPa, respectively. The high-temperature bending strength showed an increasing trend with increasing test temperatures, with the value of 449.7 ± 26 MPa at 1300 °C. The thermal expansion coefficient was 6.2 × 10−6 °C−1 in the temperature range from 200 °C to 1450 °C. The isothermal oxidation of Al4SiC4 ceramics at 1200–1600 °C for 10–20 h revealed that it had excellent oxidation resistance.  相似文献   

18.
《Ceramics International》2022,48(12):16499-16504
The thermochemical degradation of hafnium silicate (HfSiO4) was investigated with a molten calcium-magnesium-aluminosilicate (CMAS) glass relevant to gas turbine engine applications. Sintered HfSiO4 coupons were fabricated, within which wells were drilled and filled with CMAS glass powder at a loading of ~35 mg/cm2. Samples were heat treated at 1200°C, 1300°C, 1400°C, and 1500°C for 1 h, 10 h, and 50 h. At 1200°C and 1300°C, slow formation of a Ca2HfSi4O12 cyclosilicate phase was observed at the HfSiO4-CMAS interface. At 1300°C and higher, rapid infiltration of CMAS into the material along the grain boundaries was observed. Initial conjecture into CMAS degradation mechanisms of HfSiO4 are presented herein.  相似文献   

19.
《Ceramics International》2022,48(22):32804-32816
Cansas-III SiC fibers were exposed in argon, air and wet oxygen (12%H2O+8%O2+80%Ar) atmospheres for 1 h at 1000–1500 °C. The pristine fiber consisted of β-SiC, free carbon and SiCxOy phases. After exposure in air and wet oxygen, an amorphous SiO2 layer with embedding α-cristobalite crystals formed, while stacking faults were generated in the SiC core to release the residual stress. With the increasing oxidation temperature, lots of pores formed in the oxide layer, accompanied with the thickening, cracking and spallation of oxide layer. The average tensile strength decreased with the exposure temperature increasing and the exposure atmosphere deteriorating (argon→air→wet oxygen). After exposure at 1400 °C in argon and air, the fiber strength retention rates were 84% and 70%, respectively. However, after exposure at 1300 °C in wet oxygen, the strength retention rate was only 51%, indicating the accelerating oxidation and severe strength degradation of fibers.  相似文献   

20.
Single-phase Hf2Al4C5 ternary carbide was fabricated from Hf/Al/C powder mixtures by pressure assisted sintering techniques such as hot pressing and spark plasma sintering at 1900 °C for 3 h and 10 min, respectively. XRD confirmed that the ternary carbide started to form at temperatures as low as 1500 °C and with total formation of Hf2Al4C5 after reactive sintering for 1 h at 1900 °C. It is evident from HRTEM that two Hf-C layers were sandwiched with 4 Al-C layers (Al4C3) in the Hf2Al4C5 ternary carbide. Tight interlocking of grains, faceted grains and stacking faults were occasionally observed. Thermal conductivity of Hf2Al4C5 is measured to be 14 w m?1k?1 from room temperature to 1300 °C. The oxidation studies carried out at 1300 °C for 3 h reveal that the oxidation layer thickness is around 220 μm and it contains microcracks closer to sample surface whereas the interface looks seamless without any cracking or spallation of the oxide layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号