首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ce3+‐doped Gd3Fe5O12 (Ce:GIG) film has a good application prospect in the field of integrated optical device. In this article, Ce:GIG and Ce,Ga:GIG films were deposited onto the quartz glass substrate by using radio‐frequency magnetron sputtering technology. The crystal phase, surface morphology, magnetization, and magnetic circular dichroism properties of films were characterized by using the X‐ray powder diffraction, atomic force microscopy, vibrating sample magnetometer, and circular dichroism spectrometer. The results show that as‐prepared Ce,Ga:GIG films has a good quality and show an excellent magneto‐optical performance, and the doping of Ga3+ ion and the annealing process have significant effect on the magnetism and magneto‐optical performances. It is expected that Ce,Ga:GIG film with a moderate Ga3+‐doping content is a better candidate than Ce:GIG and Ce:YIG films for the next generation of integrated optical isolator and other magneto‐optical equipment.  相似文献   

2.
Wurtzite ZnO thin films were grown on single-crystal perovskite SrTiO3(STO) (1 0 0) substrates at various temperatures. The ZnO/STO thin films thus formed exhibit a preferred (1 1 0)-orientation at a growth temperature of 600-700 °C. A high growth temperature enhances not only the (1 1 0)-texture of ZnO/STO thin films but also the crystalline quality of the film. (La0.7Sr0.3)MnO3 (LSMO) thin films were subsequently grown on ZnO(1 1 0)/STO(1 0 0) substrates with various thicknesses, and were polycrystalline. A thicker LSMO film has a stronger (0 0 l)-preferred orientation than the thinner one. The lattice distortion of LSMO decreases as the LSMO thickness increases. Magnetization vs. temperature curves show that both crystalline quality and lattice distortion influence the magnetic properties of LSMO thin films. The physical properties of the manganite oxide can be modulated by forming a heterostructure with wurtzite ZnO.  相似文献   

3.
《Ceramics International》2019,45(12):14928-14933
In this paper, GdFeO3 thin films with high orientation and heavily Ce3+ doping were deposited by radio frequency magnetron sputtering with a matching substrate. The effects of substrates and Ce3+ doping on the structure, magnetic and magneto-optical properties of thin films were investigated. As a result, Ce3+ doping can not only increase the saturation magnetization but also greatly enhance the magnetic circular dichroism signals of Ce:GdFeO3 thin films. Based on the density functional theory calculation, it can be found that the probability of electron transition between Ce3+ 4f and Fe3+ 3d and the difference in the absorption of right and left circularly polarized light increase, which results in the strong magneto-optical effect of Ce:GdFeO3/STO thin films.  相似文献   

4.
By doping different concentrations of Mg2+ at Ni site, the (00l)-oriented La2MgxNi1-xMnO6 (abbreviated as LMxNMO, x = 0, 0.1, 0.2, 0.3, 0.4) double-perovskite thin films were epitaxially grown by pulsed laser deposition. The substitutional effect of Mg2+ on the structural and magnetic properties of the films is comprehensively investigated. It is found that with the increase of Mg-doping concentration, the in-plane and out-of-plane lattice constants as well as the cell volume of the LMxNMO thin films increase, which could be ascribed to the radius difference between Mg2+ and Ni2+/Ni3+ ions, resulting in the in-plane compressive stress in LMxNMO films. When the Mg-doping concentration is small (x ≤ 0.1), the doped Mg2+ tends to substitute Ni3+, which restrains the intensity of antiferromagnetic interaction between Ni3+-O-Mn3+, resulting in the reduced the exchange bias field as well as the increased the saturation magnetization. However, when the Mg-doping concentration increases to x ≥ 0.2, Mg2+ becomes to mainly replace Ni2+ position, which could inhibit the super-exchange ferromagnetic interaction between Ni2+-O-Mn4+ magnetic paths and thus reduce the saturation magnetization. The enhanced magnetic properties can be obtained in the LM0.1NMO double-perovskite thin film, with a large saturation magnetization of 492.12 emu/cm3 and a high Curie temperature of 262.7 K.  相似文献   

5.
In this article, we report the substrate effect on ferroelectric and magnetic properties of epitaxial BiFeO3‐based thin films at room temperature. (La, Mn) cosubstituted BiFeO3 (BFOLM) thin films were deposited on differently lattice mismatched single‐crystal substrates to manipulate the strain states in the as‐deposited films. All the films with 30‐nm thick CaRuO3 bottom electrodes exhibited highly epitaxial growth behavior with a slightly monoclinic distorted lattice structure while their strain states are drastically different as confirmed by X‐ray reciprocal space mapping. These films possessed significantly different macroscopic ferroelectric properties with giant remanent polarization of 101 ± 2, 65 ± 2, and 48 ± 2 μC/cm2 for the films grown on SrTiO3, (La, Sr)(Al, Ta)O3, and LaAlO3, respectively. It is found that the room‐temperature magnetic properties are also in accordance with their strain state, having a reciprocal relationship with polarization. For example, the enhanced magnetization is associated with the suppressed polarization and vice versa. The stain tunability of multiferroic properties in BFOLM thin films are presumably ascribed to the polarization rotation and oxygen octahedral tilts.  相似文献   

6.
《Ceramics International》2020,46(1):381-390
Ce-doped TiO2 thin films were synthesized by sol-gel dip coating route to evaluate the effect of Ce doping percentage on properties of TiO2. X-ray diffraction spectra revealed both anatase and brookite phases, and Ce doping favours the anatase–brookite transformation of TiO2 films. The optical constants of the thin films were achieved by evaluating spectroscopic UV-VIS-NIR spectrophotometry data. The band gap of the Ce doped TiO2 was reduced from ~3.93 eV to ~3.79 eV with an increase in Ce doping percentage. All films have shown ferromagnetic behaviors which increase with the increase in Ce content due to enhancement in the bound magnetic polaron. Higher Ce doping increases the oxygen vacancies and saturation magnetization. Boost magnetic properties stem from the generation of the interaction between the Ce ion and an oxygen vacancy. The study showed that the antimicrobial activity of Ce doped TiO2 is ineffective. Hence doping of Ce can modify the properties of TiO2 and are used in LEDs, magneto-optical devices and solar cells.  相似文献   

7.
Thin metal films often exhibit interesting properties that are essentially different from the bulk ones. XAFS (X-ray absorption fine structure) and XMCD (X-ray magnetic circular dichroism) techniques are quite suitable to investigate structural, thermal and magnetic properties of thin metal films. In this proceeding, we will present following two topics concerning structural and magnetic properties of adsorbates on thin metal films. The first one is the adsorption geometry of SO2 on a 1-monolayer (ML) Pd thin film grown on a Ni(111) single crystal. It was found by S K-edge XAFS that SO2 is lying flat on 1-ML Pd/Ni(111). This result is not similar to the bulk Pd surface but to the bulk Ni one. This finding indicates significant modification of the electronic structure of the 1-ML Pd film compared to the bulk one. The second topic is the magnetic moment induced on CO adsorbed on Ni epitaxial films grown on Cu(001). The O K-edge XMCD results revealed that in the perpendicularly magnetized 10-ML Ni film the orbital moment of CO is parallel to the substrate Ni magnetization, while it is antiparallel in the in-planar magnetized 6-ML and thick (>100 ML) films. The origin of the induced orbital moment at CO is discussed.  相似文献   

8.
The BiFeO3 (BFO) thin film was deposited by pulsed-laser deposition on SrRuO3 (SRO)-buffered (111) SrTiO3 (STO) substrate. X-ray diffraction pattern reveals a well-grown epitaxial BFO thin film. Atomic force microscopy study indicates that the BFO film is rather dense with a smooth surface. The ellipsometric spectra of the STO substrate, the SRO buffer layer, and the BFO thin film were measured, respectively, in the photon energy range 1.55 to 5.40 eV. Following the dielectric functions of STO and SRO, the ones of BFO described by the Lorentz model are received by fitting the spectra data to a five-medium optical model consisting of a semi-infinite STO substrate/SRO layer/BFO film/surface roughness/air ambient structure. The thickness and the optical constants of the BFO film are obtained. Then a direct bandgap is calculated at 2.68 eV, which is believed to be influenced by near-bandgap transitions. Compared to BFO films on other substrates, the dependence of the bandgap for the BFO thin film on in-plane compressive strain from epitaxial structure is received. Moreover, the bandgap and the transition revealed by the Lorentz model also provide a ground for the assessment of the bandgap for BFO single crystals.  相似文献   

9.
《Ceramics International》2016,42(15):17162-17167
The PbTi1xPdxO3−δ (xPTPO) thin films prepared by chemical solution deposition have been investigated by means of structural characterizations, optical and magnetic measurements. X-ray diffraction patterns show that all the films have a pseudotetragonal perovskite structure, but also exhibit a lattice dilatation behavior and increased internal strain as the x increases. A possible mechanism for strain-induced structural evolution is discussed. Raman scattering further corroborates this change in average structure, where the characteristic variation of phonon modes, indirectly reveal the incorporation of Pd2+ ions into host lattice. Transmittance spectra analysis indicates that Pd doping has a key effect on the energy band structure. The optical bandgap of xPTPO films decreases significantly with increasing Pd content, expressed by (3.5–9.0x) eV (0≤x≤0.09). Also, magnetic switching driven by doping has been confirmed in the films, which is attributed to the competition between ferromagnetic and paramagnetic/antiferromagnetic components.  相似文献   

10.
Mn‐doped (Bi0.5Na0.5)0.94Ba0.06TiO3 (MnBNBT) thin films were prepared on SrRuO3 (SRO)‐coated (001) SrTiO3 (STO) single crystal substrates by pulsed laser deposition under different processing conditions. Structural characterization (i.e., XRD and TEM) confirms the epitaxial growth of STO/SRO/MnBNBT heterostructures. Through the judicious control of deposition temperature, the defect level within the films can be finely tuned. The MnBNBT thin film deposited at the optimized temperature exhibits superior ferroelectric and piezoelectric responses with remanent polarization Pr of 33.0 μC/cm2 and piezoelectric coefficient d33 of 120.0 ± 20 pm/V.  相似文献   

11.
The present work evaluates the effects of plasma power and oxygen mixing ratios (OMRs) on structural, morphological, optical, and electrical properties of strontium titanate SrTiOx (STO) thin films. STO thin films were grown by magnetron sputtering, and later thermal annealing at 700°C for 1 h was applied to improve film properties. X-ray diffraction analysis indicated that as-deposited films have amorphous microstructure independent of deposition conditions. The films deposited at higher OMR values and later annealed also showed amorphous structure while the films deposited at lower OMR value and annealed have nanocrystallinity. In addition, all as-deposited films were highly transparent (~80%–85%) in the visible spectrum and exhibited well-defined main absorption edge, while the annealing improved transparency (90%) within the same spectrum. The calculated direct and indirect optical band gaps for films were in the range of 3.60-4.30 eV as a function of deposition conditions. The refractive index of the films increased with OMRs and the postdeposition annealing. The frequency dependent capacitance measurements at 100 kHz were performed to obtain film dielectric constant values. High dielectric constant values reaching up to 100 were obtained. All STO samples exhibited more than 2.5 μC/cm2 charge storage capacity and low dielectric loss (less than 0.07 at 100 kHz). The leakage current density was relatively low (3 × 10−8Acm−2 at +0.8 V) indicating that STO films are promising for future dynamic random access memory applications.  相似文献   

12.
《Ceramics International》2023,49(15):25463-25468
The growth, microstructure and magnetic property of both bulk and thin film types of ScFeO3 are studied. Results show that the mono-phase bixbyite structure bulk ScFeO3 can be obtained with sintering temperature above 1400 °C. The bulk ScFeO3 shows dominant antiferromagnetic property with an antiferromagnetic Neel temperature TN about -26 K. The epitaxial type of ScFeO3 thin film with bixbyite structure can be well grown on the SrTiO3(111) substrate. The magnetic property of ScFeO3 thin film is significantly different from that of bulk material which shows notable room temperature ferromagnetism with a saturation field below 0.4 T. The saturation magnetization MS, remanent magnetization Mr, coercivity Hc and of ScFeO3 film increase with decreasing temperature with maximum values of MS = 5.1 emu/cc, Mr = 1.5 emu/cc, and Hc = 29 mT at 5 K. The ferromagnetism of ScFeO3 thin film should be caused by the interface mismatch strain at film/substrate interface. This further proves that ferromagnetism of ScFeO3 can be stabilized with microstructure engineering including strain, which enable multifunctional properties of this material.  相似文献   

13.
0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BCZT) epitaxial thin films were grown on SrRuO3 (SRO) coated (001)‐oriented SrTiO3 (STO) single crystal substrates by pulsed laser deposition under different oxygen partial pressures in the processing of deposition. The effects of oxygen partial pressure on structure, cation stoichiometry, surface morphology, leakage current behavior, ferroelectric, and piezoelectric properties were investigated. Both the lattice parameters and (Ba + Ca)/(Ti + Zr) cation ratio decrease with increasing oxygen partial pressure. The BCZT thin film with the ideal cation stoichiometry was obtained under 200 mTorr, giving rise to a remanent polarization Pr = 14.5 μC/cm2 and effective piezoelectric coefficient d33 = 96 ± 5 pm/V.  相似文献   

14.
《Ceramics International》2016,42(7):7918-7923
In this paper, we report the fabrication and systematic characterization of Fe Doped ZnO thin Films. FexZn1−x O (x=0<0.05) films were prepared by RF magnetron sputtering on Si (400) substrate. Influence of Fe doping on structural, optical and magnetic properties has been studied. The X-ray diffraction (XRD) analysis shows that Fe doping has affected the crystalline structure, grain size and strain in the thin films. The best crystalline structure is obtained for 3% Fe Doping as observed from Atomic Force Microscopy (AFM) and X-ray diffraction (XRD). The magnetic properties studied using Vibrating Sample Magnetometer reveals the room temperature ferromagnetic nature of the thin films. However, changing the Fe concentration degrades the magnetic property in turn. The mechanism behind the above results has been discussed minutely in this paper.  相似文献   

15.
Flat and wrinkled La0.7Sr0.3MnO3 (LSMO) thin films were prepared by sol‐gel method, respectively, on Si (001) substrates by adjusting heating rate at drying stage. Wrinkled film has larger grains than flat film. Coercive field (about 27 Oe) of wrinkled film is higher than that of flat film, which is much low as around 5 Oe. Compared with flat films, wrinkled films have larger magnetization, higher Curie temperature (334 K) and peak resistivity temperature (243 K), and lower resistivity (0.18 Ohm·cm at 300 K). The introducing of wrinkles is an efficient way to induce compressive stress in sol‐gel derived polycrystalline LSMO films and enhance the magnetic and electric properties.  相似文献   

16.
Mn-doped BiFeO3 (BiFe1–xMnxO3, x = 0, 0.03, 0.05, 0.10, 0.15 and 0.20) polycrystalline multiferroic thin films were successfully synthesized using the facile sol-gel spin-coating method. The crystal structures, surface features, elements valences, and magnetic properties of as-prepared samples were systematically explored. X-ray diffraction and Raman spectroscopy studies revealed the substitutions of Mn into the Fe site and a rhombohedral-to-orthorhombic phase transition. The Field Emission Scanning Electron Microscopy showed a decrease in the average particle sizes and an improvement of surface morphology with increasing the concentration of the substitutes. Energy-dispersive X-ray spectroscopy confirmed the doping concentration of Mn2+ in the samples. X-ray photoelectron spectroscopy indicated the co-existence of Mn2+/Mn3+ ions in the doped films. The remnant magnetization value of BiFe0.90Mn0.10O3 thin film was found to be approximately six times than that of pure BiFeO3 thin film under a magnetic field of 10 kOe. The enhanced magnetic property of BiFe0.90Mn0.10O3 thin film was mainly ascribed to the structural distortion of spin cycloid and the enhancement of super-exchange interaction between the Fe3+ (Mn2+) and O2- ions.  相似文献   

17.
ZnFe2O4 (ZFO) thin films exhibiting varying crystallographic features ((222)-epitaxially, (400)-epitaxially, and randomly oriented films) were grown on various substrates by radio-frequency magnetron sputtering. The type of substrate used profoundly affected the surface topography of the resulting ZFO films. The surface of the ZFO (222) epilayer was dense and exhibited small rectangular surface grains; however, the ZFO (400) epilayer exhibited small grooves. The surface of the randomly oriented ZFO thin film exhibited distinct three-dimensional island-like grains that demonstrated considerable surface roughness. Magnetization-temperature curves revealed that the ZFO thin films exhibited a spin-glass transition temperature of approximately 40 K. The crystallographic orientation of the ZFO thin films strongly affected magnetic anisotropy. The ZFO (222) epitaxy exhibited the strongest magnetic anisotropy, whereas the randomly oriented ZFO thin film exhibited no clear magnetic anisotropy.  相似文献   

18.
We investigated the effect of gadolinium doping (1‐5 at.%) on the magnetic and dielectric properties of Fe3O4 nanoparticles, synthesized by the chemical co‐precipitation technique, primarily to understand the onset of multifunctional properties such as ferroelectricity and magnetodielectric coupling. The substitution of larger Gd3+ ions at smaller Fe3+ octahedral sites in inverse spinel Fe3O4 has significantly influenced the morphology, average crystallite size, and more importantly, the magneto‐crystalline anisotropy and saturation magnetization. The magneto‐crystalline anisotropy and the saturation magnetization decreases substantially, however, significant increase in the average crystallite size is observed upon Gd doping. Furthermore, temperature‐dependent dielectric studies suggest that these nanoparticle systems exhibit relaxor ferroelectric behavior, with much pronounced ferroelectric polarization moment recorded for 5 at.% Gd doped Fe3O4 as compared to its undoped counterpart.  相似文献   

19.
The substitution in (Ba0.70Sr0.30)TiO3 thin films by the rare‐earth element dysprosium prepared at 1000°C by chemical solution deposition on nickel foils was investigated. The relatively large thermal budget applied (via annealing temperature) is shown to enhance the solubility of the Dy3+doping ion into the crystal lattice of the perovskite films. Preference for B‐site occupancy of this amphoteric cation was further promoted by the addition of BaO excess (1 mol%), which results in slightly larger grains in the films as observed by scanning electron microscopy. Despite this Ba‐rich composition, the presence of secondary phases in the thin films was not detected by X‐ray diffraction. Transmission electron microscopy revealed no evidence for local segregation of Dy at grain boundaries, neither the formation of NiO at the interface between the film and the metal foil was observed. The substitution of Ti4+ by Dy3+ leads to the formation of strong electron acceptors in the system, which balance the number of ionized oxygen vacancies arisen from the reductive crystallization atmosphere used during processing. As a consequence, the dielectric loss (tan σ) and leakage conduction measured in the resulting thin‐film capacitors were significantly reduced with respect to nominally undoped samples. The improvement of this capacitor feature, combined with the relatively high permittivities obtained in the films (490–530), shows the effectiveness of dysprosium doping within a thin‐film fabrication method for potential application into the multilayer ceramic capacitor technology.  相似文献   

20.
Transition metal (TM)-doped TiO2 films (TM = Co, Ni, and Fe) were deposited on Si(100) substrates by a sol–gel method. With the same dopant content, Co dopants catalyze the anatase-to-rutile transformation (ART) more obviously than Ni and Fe doping. This is attributed to the different strain energy induced by the different dopants. The optical properties of TM-doped TiO2 films were studied with spectroscopic ellipsometry data. With increasing dopant content, the optical band gap (EOBG) shifts to lower energy. With the same dopant content, the EOBG of Co-doped TiO2 film is the smallest and that of Fe-doped TiO2 film is the largest. The results are related to electric disorder due to the ART. Ferromagnetic behaviors were clearly observed for TM-doped TiO2 films except the undoped TiO2 film which is weakly magnetic. Additionally, it is found that the magnetizations of the TM-doped TiO2 films decrease with increasing dopant content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号